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m = 0, 1,   ..., M-\; relates extended discrete trigonometric trans- 

form matrices to generalized discrete Fourier transform matrices 

E{*} expected value operator 
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tension matrix 
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?{•} discrete Fourier transform operator 
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h(nx, rij) two-dimensional degrading system point spread function 
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terms 
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ordered two-dimensional sequence 

XII 



Symbol Definition 

Ha, h
r

s Nx\ vector representations of hr
a(n) and /£(») 

hga, hZ, hZ, h™ NxN2xl lexicographic vector representations of hZ(nx,n2), 

C("i>"2)> Ka(ni>n2)> and C("l>«2) 

H superscript denoting Hermitian or conjugate transpose 

H NxxN2 matrix representation of two-dimensional degrading system 
point spread function 

C. HZ> HZ> H7s NixN2 matrix representations of C("i>«2)> C(«i»"2X C("i,"2)> 

and hZ(nx,n2) 

HB MXM2 x M]M2 matrix which can be either block circulant, block 
skew-circulant, or a combination depending on the underlying sym- 

metry of the rows and columns of H 

HBC NXN2 x NXN2 block circulant matrix which performs two- 

dimensional circular convolution for degrading system 

HBS N\N2 x NXN2 block skew-circulant matrix which performs two- 
dimensional skew-circular convolution 

HBSC NXN2 x NXN2 block symmetric convolution matrix 

Hßscaai Hßscas' NXN2 x NXN2 block symmetric convolution matrices implementing 

HBSC sa, HBSC ss two-dimensional block symmetric convolution by the matrices 

HrJa, HZ, Hr/a, and H%; the 'BSC subscript is dropped in later 
chapters when it is obvious that the form of convolution is block 

symmetric 

H'BSCaa, ..., H'BSCss NXN2 x NXN2 block symmetric convolution matrices implementing 

H'BSC aa> • • •' H'BSC SS two-dimensional block symmetric convolution by the matrices 

H'B"SCaa, ..., H'B"SCss HZ, HZ, HZ, and HZ using alternate but equivalent forms of 

block symmetric convolution 

Hc N x N circulant matrix which performs one-dimensional circular 
convolution for degrading system 
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Symbol Definition 

HCxS ^\^2 x ^1^2 matrix of partitioned blocks of skew-circulant matri- 
ces arranged in a circulant pattern 

HM MxM circulant or skew-circulant matrix used inside matrix defi- 
nition for symmetric convolution 

Hs Nx N skew-circulant matrix which performs one-dimensional 
skew-circular convolution 

HSxC N)N2 x NtN2 matrix of partitioned blocks of circulant matrices ar- 
ranged in a skew-circulant pattern 

Hsc Nx N symmetric convolution matrix 

HSCa, Hscs Nx N symmetric convolution matrices implementing symmetric 

convolution by the vectors Ua and hr
s; e.g., HSCfl - S2l<N^TßC2eN 

and Hsc  = C2lN^¥TJJ2eN; the 'SC subscript is dropped in later 

chapters when it is obvious that the form of convolution is symmet- 

ric 

H'SCa, H'SCj NxN symmetric convolution matrices implementing symmetric 

convolution by the vectors tfa and Ks using alternate but equivalent 

forms of symmetric convolution; e.g., H'SCja = -C2lNWTaSleN and 

%<F(k), ^F(kuk2) one and two-dimensional discrete Fourier transforms of h{ri) and 

Ä(«,,«2) 

^0(k), W0(kx,k2) one and two-dimensional odd discrete Fourier transforms of h(ri) 

and ä(«!,«2) 

1VT(k), ^T(k},k2) one and two-dimensional discrete trigonometric transforms of h(n) 

and Ä(«!,n2) 

&Ta(k), &Ts(k) decomposition of ^T(k) into its antisymmetric and symmetric 

parts; the T' subscript is dropped in later chapters when it is obvious 

that the transform domain is trigonometric 
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Symbol Definition 

^7>>(^i'^2)> ^Tjasi^i'^i)' decomposition of ^T{kx,k2) into its antisymmetric and symmetric 

&Tja(k\>ki)> ^T^si^x^i)   parts; the T' subscript is dropped in later chapters when it is obvious 

that the transform domain is trigonometric 

4™, &as> &7a> Kl NxN2x\ trigonometric transforms of the vectors h"a, h"s, h
r

s
r

a, and 

hZ 

"aa> "as' "sa' 

&P diagonalized degrading system convolution matrix in the Fourier 

domain; N x N for a one-dimensional object; NlN2 x NXN2 for a 
lexicographically-ordered two-dimensional object 

??F)<0 ^1^2 x -^1^2 diagonal form of HCxS 

9M Mx M transform of HM; equal to "%F if HM is circulant, or ^f0 

if HM is skew-circulant 

#0 diagonalized convolution matrix in the odd Fourier transform do- 

main; N x N for a one-dimensional object; NlN2 x NtN2 for a 
lexicographically-ordered two-dimensional object 

&0xF AT,Af2 x N:N2 diagonal form of HSxC 

??r diagonalized symmetric convolution matrix in the trigonometric 

transform domain; N x N for a one-dimensional object; NlN2 x 

NXN2 for a lexicographically-ordered two-dimensional object 

"^Ta'^Ts Nx N diagonalized forms of one-dimensional symmetric convolu- 

tion matrices; e.g., #r>fl = diagjs^ N%} and -&Ts = diag|cu>JVÄ;J; 

the T subscript is dropped in later chapters when it is obvious that 

the transform domain is trigonometric 

^T,aa. *7v» > *7>» *7>      Ni x N2 trigonometric transforms of the matrices Hr
a
r

a, H
r

a[, Hr/a, 

and HZ 

^T,aa> ^r,as' ^Tja> ^T,SS      N\^2 x ^i^2 trigonometric transforms of the matrices HBSCaa, 
Huse,as, HBsc,sa> and Hßscss' the T subscript is dropped in later 
chapters when it is obvious that the transform domain is trigonomet- 

ric 

xv 



Symbol Definition 

/ identity matrix when dimension is obvious from context 

IL Lx L identity matrix 

k one-dimensional transform domain index 

kx, k2 two-dimensional transform domain indices 

kn constant term in definition of discrete trigonometric transform ma- 

trices; kn -1/2 for n = 0 or N, 1 otherwise 

L length of possibly N-\, N, orN + \ depending on length of par- 

ticular discrete trigonometric transform 

Zj, Zj lengths of possibly Nx -1, Nx, or Nx +1 and N2 -1, N2, orN2 + \ 

depending on length of particular two-dimensional discrete trigono- 

metric transform 

min{.} minimum 

M length of a extended version of a one-dimensional sequence; 

M = 2N for Neven or M = 2N-\ for Nodd 

Mx, M2 lengths of extended versions of two-dimensional sequences; Mx = 

2NX for Nx even or Mx = 2Nx-\ for A^, odd, and M2 =2N2 for 

N2 even or M2=2N2-\ for N2 odd 

He object mean vector; N x 1 for a one-dimensional object; A^A^ x 1 

for a lexicographically-ordered two-dimensional object 

n one-dimensional sequence domain index 

n0 a particular value of«; symmetric convolution induces a delay of 

n0 = 0 or 1 

nx, «2 two-dimensional spatial domain indices 

A'' length of a one-dimensional sequence 

Nx, N2 lengths in «,, r^ directions of two-dimensional sequences 
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Symbol Definition 

%L{ri) rectangular window of length L 

RL Lx M matrix equivalent of %L(n); RL = [/£  0] 

(R^ ® Rj^) L^Lj x Mx M2 windowing matrix which retains samples of interest 

form two-dimensional symmetric convolution expression; R,  re- 

tains L, samples from each column, and R^ retains 1^ samples 

from each row; R^ = [ 1^ 01 and R, = \l,   OJ 

Ree object correlation matrix; NxN for a one-dimensional object; 

NXN2 x A^A^ for a lexicographically-ordered two-dimensional ob- 

ject 

R0 0 Fourier domain object correlation matrix; N x N for a one- 

dimensional object; NlN2 x NXN2 for a lexicographically-ordered 

two-dimensional object 

Re@ N x N discrete cosine transform domain object correlation matrix 

for a one-dimensional object; subscript's' denotes symmetric portion 

R@ 0 N{N2x NXN2 discrete cosine transform domain object correlation 

matrix for a lexicographically-ordered two-dimensional object; sub- 

script to'denotes symmetric portion about both axes 

Rww noise correlation matrix; N x N for a one-dimensional noise se- 

quence; A7',N2 x NXN2 for a lexicographically-ordered two- 

dimensional noise sequence 

Rww , Rww N x N trigonometric domain noise correlation matrices for a one- 

dimensional noise sequence; subscripts 'a'and 's' denote antisym- 

metric and symmetric portions 

R-u, ■», , R-vj -i» , N,N-, x N,Nj trigonometric domain noise correlation matrices for a 
"au "aa "as "fas i       £. \       £. *s 

Rw w , R-u-u lexicographically-ordered two-dimensional noise sequence; sub- 

scripts 'aa\ 'as', 'sa', and 'ss' denote antisymmetric and symmetric 

portions about the nx and r^ axes 
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Symbol Definition 

Rw w Fourier domain noise correlation matrix; N x N for one- 

dimensional data; NXN2 x NiN2 for lexicographically-ordered two- 

dimensional data 

p correlation coefficient 

© skew-circular convolution operator 

SUiN, ..., SieN NxN discrete sine transform matrices of types I - IV for even- 

length sequences 

SloN, ..., S4oN NxN discrete sine transform matrices of types I - IV for odd- 

length sequences 

S^j«}, ..., <£)<;{•} discrete sine transform operators of types I - IV for even-length se- 

quences 

SXo {•}, ..., S4o {•} discrete sine transform operators of types I - IV for odd-length se- 

quences 

T superscript denoting transpose of a vector or matrix 

Tr{«} trace of a matrix 

TL Lx L trigonometric transform matrix 

f MxL extended trigonometric transform matrix; T has twice as 

many rows as TL 

(Tc,<8>TrL) L^l^xLJ^ two-dimensional trigonometric transform matrix which 

acts on a lexicographic vector representing a matrix; Tc L| and TrLi 

are different one-dimensional trigonometric transform matrices 

which act on the columns and the rows of the matrix 

7{«} trigonometric transform operator 

B{n), 6{nun2) one and two-dimensional object sequences 

0{n), 0(w,,w2) one and two-dimensional object estimates 
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Symbol Definition 

&F{k), 3F{kx,k2) one and two-dimensional discrete Fourier transforms of an object 
sequence 

&0(k), &0{kx,k2) one and two-dimensional odd discrete Fourier transforms of an ob- 
ject sequence 

ST(k), ST(kx,k2) one and two-dimensional discrete trigonometric transforms of an 
object sequence 

0p(k), 02
F(kx,k2) diagonal elements of one and two-dimensional Fourier domain ob- 

ject correlation matrices 

05 (k), 0ss(kx, k2) diagonal elements of one and two-dimensional discrete cosine trans- 

form domain object correlation matrices 

6 object sequence expressed as a vector; N x 1 for a one-dimensional 

object; NlN2 x 1 for a lexicographically-ordered two-dimensional 
object 

9 object estimate expressed as a vector; N x 1   for a one-dimensional 

object; NxN2x\ for a lexicographically-ordered two-dimensional 
object 

0min linear minimum mean-squared error estimate; N x 1 for a one- 

dimensional object; NXN2 x 1 for a lexicographically-ordered two- 
dimensional object 

3F discrete Fourier transform of object vector; JVxl for a one- 

dimensional object; NxN2xl for a lexicographically-ordered two- 
dimensional object 

3T discrete trigonometric transform of object vector; Nxl for a one- 

dimensional object; NXN2 x 1 for a lexicographically-ordered two- 
dimensional object 

3Tss Af,^ x 1 vector in the discrete cosine transform domain having 

half-sample symmetry about both axes 

0 NxxN2 matrix representation of a two-dimensional object 
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Symbol Definition 

0F JV, x N2 matrix representation of discrete Fourier transform of ob- 
ject matrix 

0T Nx x N2 matrix representation of discrete trigonometric transform 
of object matrix 

0TtSS Nx x N2 matrix representation of &Tss 

vec{»} converts a matrix into a lexicographically-ordered vector 

V^ Nx N odd discrete Fourier transform matrix; V^1 -Gl0N 

w(n), w(nun2) one and two-dimensional noise sequences 

Tffp (k), 7Vp {kx, k2) diagonal elements of one and two-dimensional Fourier domain noise 
correlation matrices 

7ffa;(k), 7ffs (k) diagonal elements of one-dimensional trigonometric transform do- 

main noise correlation matrices, Rww , and RW7t, 

7t?aa{kx, k2), 70as(&, ,k2), diagonal elements of one-dimensional trigonometric transform do- 

7&}a{kx,k2), 70l(kx,k2) main noise correlation matrices, Ä^A, Rw^, RWA, and R^ 

W^x NxN discrete Fourier transform matrix 

x(n), xin^r^) arbitrary one and two-dimensional sequences 

xa(ri), xs{ri) antisymmetric and symmetric portions of x{n); x(n) = xa{ri) + xs(ri) 

^("l»*^)' -^("n^X sequences representing portions of the decomposition of xiji^r^) 
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x arbitrary one-dimensional sequence expressed as an Nxl vector 

jc Mxl symmetric extension of x 
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AFIT/DS/ENG/98-04 

Abstract 

This dissertation demonstrates how the symmetric convolution-multiplication property of 

discrete trigonometric transforms can be applied to traditional problems in image reconstruction 

with slightly better performance than Fourier techniques and increased savings in computational 

complexity for symmetric point spread functions. The fact that the discrete Fourier transform 

diagonalizes a circulant matrix provides an alternate way to derive the symmetric convolution- 

multiplication property for discrete trigonometric transforms. Derived in this manner, the sym- 

metric convolution-multiplication property extends easily to multiple dimensions and generalizes 

to multidimensional asymmetric sequences. The symmetric convolution-multiplication property 

allows for linear filtering of degraded images via point-by-point multiplication in the transform 

domain of trigonometric transforms. Specifically in the transform domain of a type-II discrete 

cosine transform, there is an asymptotically optimum energy compaction about the low- 

frequency indices of highly correlated images which has advantages in reconstructing images 

with high-frequency noise. The symmetric convolution-multiplication property allows for well- 

approximated scalar representations in the trigonometric transform domain for linear reconstruc- 

tion filters such as the Wiener filter. An analysis of the scalar Wiener filter's improved mean- 

squared error performance in the trigonometric transform domain is given. 
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TRIGONOMETRIC TRANSFORMS FOR 

IMAGE RECONSTRUCTION 

I. Introduction 

The results of the research presented in this dissertation demonstrate new forms of linear 

image reconstruction filters which employ a recently-developed property of trigonometric trans- 

forms. Image reconstruction is the process of restoring degraded images [40]. An imaging sys- 

tem typically measures a blurred, noisy image of an object. The system must then apply image 

reconstruction techniques to recover an estimate of the object from its blurred, noisy version. 

Linear image reconstruction techniques use linear shift-invariant filters to recover the ob- 

ject [27]. A linear shift-invariant filter is a system whose response to an arbitrary input is com- 

pletely characterized by its response to a single impulse [37]. 

The Air Force is interested in image reconstruction because it has a need to image space- 

borne objects from the ground [13]. This problem is complicated by the turbulent atmosphere 

which has a severe degrading effect on the quality of images [40] and by the noise present in im- 

age detection systems [17]. Many existing nonlinear image reconstruction techniques are itera- 

tive [30] - [32], and require large amounts of computer processing time with a high degree of 

computational complexity. Existing linear methods [15], [21], [27], [38], [44], require fewer 

computations than iterative methods, but suffer from poorer performance. An image reconstruc- 

tion technique which has better performance than existing linear techniques, yet still offers the 

computational advantage of linearity would thus be of great interest to the Air Force. 



The general purpose of this dissertation is to investigate the application of trigonometric 

transforms to the two-dimensional image reconstruction problem. Two-dimensional trigonomet- 

ric transforms [26], [27] convert the pixels of a discretely-sampled image into a two-dimensional 

series of coefficients which represents the amount of information contained in the image at sinu- 

soids of different spatial frequencies. A spatial frequency is the two-dimensional equivalent of a 

one-dimensional temporal frequency. Specifically, this research shows how the symmetric con- 

volution-multiplication property of discrete trigonometric transforms can improve linear image 

reconstruction filters. 

Martucci [34] recently developed the symmetric convolution-multiplication property for 

the family of discrete trigonometric transforms. The discrete trigonometric transform family 

consists of sixteen different one-dimensional transforms which are even and odd-length versions 

of type I - IV discrete sine and cosine transforms [26], [27], [39]. A sine or cosine transform per- 

forms a similar operation on an image as a Fourier transform. Consider the sequence 

9T(kx,k2) = ?{#(«!,M2)} which is the two-dimensional trigonometric transform of the sequence 

ö(«!,«2). The subscript T' denotes that the sequence 9T(kx,k2) exists in the trigonometric 

transform domain. The operator 7{»} is a two-dimensional discrete trigonometric transform 

based on any of the sixteen one-dimensional discrete trigonometric transforms. The indices nx 

and «2 correspond to an ordering of the pixels of the image. The indices kx and k2 represent the 

locations of sample points in trigonometric transform domain space which correspond to differ- 

ent spatial frequencies. The values of the sequence $T(kx,k2) at each point represent the 

amount of information contained in the image which agrees with sinusoids having spatial fre- 

quencies corresponding to kx and k2. 



Similarly the sequence 3F(kx,k2) = ?{#(«),«2)} in the Fourier domain represents the 

amount of information contained in an image which agrees with complex exponentials of differ- 

ent spatial frequencies. Here the subscript F' indicates the Fourier domain, and the operator 

7{»} represents the discrete Fourier transform. The sequences i9r(Ä:1,Ä:2)and 3F(kl,k2) are 

both transform-domain spatial frequency representations of the sequence Oin^r^). One notable 

difference between the sequences 9 T(kx,k2) and «9/r(Är1,Ä:2) isthat if ö(«l5«2) is real-valued, 

then the sequence 9T(kx,k2) will also be real-valued, but the sequence 9F(kx,k2) will be com- 

plex-valued. 

There are sixteen different one-dimensional discrete trigonometric transforms. Different 

transforms exist for sines and cosines, for even and odd-length sequences, and for different types 

distinguished as types I - TV [26], [27], [39]. The four types I - rV impose half-sample shifts in 

the input or output indices of the sine and cosine transforms. A type-I trigonometric transform 

imposes no shift to either the input or the output sequence indices. A type-II transform imposes a 

half-sample shift to just the input index. A type-Ill transform imposes a half-sample shift to just 

the output index. A type-TV transform imposes a half-sample shift to both the input and the out- 

put indices. The fact that these four transforms require either no shift or a half-sample shift is 

related to the idea of the point of symmetry in the symmetric extension of a finite sequence. The 

point of symmetry can be either the end point in the sequence or a point which lies one-half 

sample beyond the end point of the sequence. 

The discrete trigonometric transform family lies at the heart of many image transform 

coding applications [27], [33], [39]. The objective of image transform coding, which is different 

than the goal of this research, is to reduce the information content of an image for storage or 

transmission. Although very useful for transform coding, the discrete trigonometric transforms 



have not proved very useful in a wide variety of image filtering applications, because until re- 

cently no convolution-multiplication property existed for the entire family. The advantage of a 

transform that possesses a convolution-multiplication properly is that the property allows a filter 

to be implemented more efficiently in the transform domain through point-wise multiplication. 

To implement the effects of a filter through convolution directly in the spatial domain requires a 

large number of shifts, adds, and multiplies. 

The circular convolution-multiplication property of discrete Fourier transforms is well- 

known [37]. A symmetric convolution-multiplication property for the entire family of discrete 

trigonometric transforms has only existed since 1994 [34]. An earlier attempt to define a convo- 

lution-multiplication property for the discrete cosine transform [6] produced a result limited to 

the convolution of only certain types of symmetric sequences. It was based solely on the type-II 

even-length discrete cosine transform. 

Martucci [34] defines symmetric convolution as the form of convolution for the entire 

family of discrete trigonometric transforms similar to the manner in which circular convolu- 

tion [37] is the form of convolution for the discrete Fourier transform. Circular convolution in- 

volves the point-by-point shifting and adding of periodic replicas of the finite sequences being 

convolved. Symmetric convolution involves the point-by-point shifting and adding of symmetric 

extensions of the sequences being convolved. The symmetric convolution-multiplication prop- 

erty states that an inverse trigonometric transform of the product of the trigonometric transforms 

of two sequences yields the same result as the symmetric convolution of the two sequences [34]. 

Mathematically, the symmetric convolution-multiplication property states that the sequence 

d{nx,n{) which is calculated as d(pvn{) = %xfrx{9(nl,ni)y%{h(nx,n2)}} is exactly the same 

sequence which results from computing the symmetric convolution of the sequences 0(nx,n2) 



and hin^rij) directly. The operators 7,{.}, 72{.}, and 73{.} are different two-dimensional dis- 

crete trigonometric transforms. The circular convolution-multiplication property for discrete 

Fourier transforms, ö?(w,,n2) = ?~l{?{9(nx,n2)}-'p{h(nl,n2)}], is very similar to the symmetric 

convolution-multiplication property for discrete trigonometric transforms. The operator ?{.} 

again represents the discrete Fourier transform. The symmetric convolution-multiplication prop- 

erty exists for forty different one-dimensional cases of various combinations of the sixteen trans- 

forms in the discrete trigonometric transform family. Symmetric convolution is limited to se- 

quences having underlying symmetry. The forty different cases cover many possibilities for both 

symmetric and antisymmetric sequences which allows an asymmetric sequence to be decom- 

posed into its symmetric and antisymmetric parts prior to being convolved. 

Previous applications of the discrete cosine transform to linear image reconstruction [26], 

[27] provided very good diagonal approximations for certain types of correlation matrices. Many 

linear image processing techniques require knowledge of how the individual pixels of an image 

are correlated with each other. If the elements of the vector 9 represent the pixels of the image 

6{nx,n2), the correlation between pixels is expressed by the matrix Ree = 99T. The overbar,    , 

indicates the expected value operator, and the superscript T denotes the transpose of the vector 

9.  If the size of the image is AT, x N2, then 9 will be an NlN2 x 1 vector and Ree will be an 

NXN2 x NXN2 matrix. The type-II discrete cosine transform has the property that it very nearly 

diagonalizes the correlation matrix of an image whose pixels are highly correlated [27]. An im- 

age with highly-correlated pixels has few abrupt transitions within a small neighborhood of pix- 

els in the image. The approximate diagonal form of the correlation matrix for a highly-correlated 

image is R9T&T = CUeJtliN2ReaC[leNiN2. The NlN2xNiN2 matrix CIIeAW is a type-II discrete 



cosine transform matrix for even-length two-dimensional sequences. The discrete cosine trans- 

form of the vector 6 is the vector &T = Clle^N0. The off-diagonal elements of the matrix 

R9T9r 
are aH approximately zero. As the pixels in an image become more highly correlated, the 

off-diagonal elements in its transform-domain correlation matrix, R9 9 , approach zero [39]. 

One of the results of this research demonstrates another diagonalizing property of discrete 

trigonometric transforms. Symmetric convolution has an equivalent matrix representation as 

d = Hsc9. The matrix Hsc incorporates all of the symmetric extensions, shifts, additions, and 

multiplications of symmetric convolution. The resulting vector d contains the same elements as 

the elements in din^n^) which resulted from the symmetric convolution of the two-dimensional 

sequences 0(«!,H2) and h^,^).  In the vector-matrix representation, the sequences 0(nvn2) 

and ^(«,,«2) are represented by the vectors 9 and A. 

Trigonometric transforms diagonalize symmetric convolution matrices because symmetric 

convolution in the spatial domain is equivalent to point-wise multiplication in the transform do- 

main. The results of this research reveal diagonalizing forms for all forty cases of symmetric 

convolution. In general, d = T^WTTxO, where the matrix 7fT is diagonal with the vector T2h 

along its diagonal. This expression is exactly equivalent to d = T^iTß © T2h], where © rep- 

resents a point-wise or Hadamard product [22]. The three matrices 7j, T2, and J3 are matrix 

representations of two-dimensional trigonometric transforms. The fact that the above matrix 

equation produces exactly the same result as d(nl,n2) = 73~
1{71{#(«1,w2)}-72{/*(«i>"2)}} is one 

of the main contributions of this research [9]. 

The matrix form of the symmetric convolution-multiplication property allows for a more 

natural extension of the property to asymmetric multidimensional sequences than the operator 



form of the property. The ability to apply the property to asymmetric two-dimensional sequences 

is important because they are the most general class of sequences encountered in image recon- 

struction. The alternate derivation of the matrix form of the property depends on the fact that a 

discrete Fourier transform matrix diagonalizes a circulant matrix representing circular convolu- 

tion [23]. 

The diagonalizing results for symmetric convolution matrices presented here are related to 

the work of Sanchez et al. Her team shows that diagonalizing forms exist for the eight discrete 

cosine transforms [41] and the eight discrete sine transforms [42]. Their method is to determine 

the class of matrices whose eigenvectors are sine and cosine transforms, but their results reveal 

diagonalizing forms for only sixteen of the forty cases of symmetric convolution - one case of 

symmetric convolution for each of the sixteen transforms. Their results therefore do not extend 

to the general case of convolving an asymmetric sequence which requires different convolution 

relations for each part of the sequence's underlying symmetry. The approach taken here is to re- 

late the discrete trigonometric transform to the discrete Fourier transform which already pos- 

sesses a diagonalizing form [23]. These newly derived diagonalizing matrix forms then allow for 

a natural extension of all the cases of the symmetric convolution-multiplication property to mul- 

tidimensional asymmetric sequences. 

The notion that a type-II discrete cosine transform matrix approximately diagonalizes the 

correlation matrix of a highly-correlated image and the property of the trigonometric transform to 

exactly diagonalize a symmetric convolution matrix both play important roles in applying trigo- 

nometric transforms to image reconstruction problems. Many existing linear image reconstruc- 

tion techniques rely on knowledge of both the correlation of the pixels in an object being imaged 

and the impulse response of the system which degrades the object. Optical scientists and engi- 

neers refer to the two-dimensional impulse response of the degrading system as its point spread 



function. The name arises from the blurring or spreading of individual points comprising the 

object [16]. 

As mentioned previously, it is computationally more efficient to calculate convolutional 

results in the transform domain. The calculations become even more efficient if all the transform 

domain matrices involved are either diagonal or well-approximated by their diagonal elements. 

Transform domain implementations of filters which rely on just the diagonal elements of matri- 

ces are called scalar filters. 

Traditional Fourier image reconstruction filters have scalar forms. For an image recon- 

struction filter to have a scalar form, both the matrix representing convolution of the degrading 

point spread function and the correlation matrix of the object must have diagonal or approxi- 

mately diagonal forms. Discrete Fourier transform matrices diagonalize circulant convolution 

matrices [23]. Discrete Fourier transform matrices also provide approximate diagonal forms of 

object correlation matrices in the transform domain [48]. For a highly correlated image, the dis- 

crete Fourier transform will not, however, condense as much of the content in all the transform 

domain terms onto the diagonal as a type-II discrete cosine transform [20], [29]. The lower en- 

ergy in the off-diagonal elements in the cosine transform domain leads to a better diagonal ap- 

proximation than the discrete Fourier transform. 

The results of this research show for the first time that trigonometric transform represen- 

tations of image reconstruction filters also have scalar forms. The fact that a type-II discrete co- 

sine transform matrix approximately diagonalizes the correlation matrix of a highly-correlated 

image is well-known [27]. More recently, Martucci's symmetric convolution-multiplication 

properly for discrete trigonometric transforms [34] allows the matrix diagonalization form of 

symmetric convolution presented here. Thus both matrices underlying the trigonometric image 

reconstruction filter are either diagonal or approximately diagonal and a scalar filter results. 



To help illustrate how a filter can recover an estimate of an object from its distorted, noisy 

version, consider the imaging scenario in Figure 1. In the figure, ^(n,,^) represents the original 

Figure 1. Imaging Scenario 

object. The sequence Kn^r^) represents the point spread function of the system blurring the 

object. The scenario adds noise represented by the sequence win^r^) to produce the received 

data sequence d(nx, r^) = h(nx, r^ )* 6{nx, r^) + w(jix, r^ ).  The recovery filter in the scenario has a 

two-dimensional impulse response, /(n^), so that the estimate of the object is 6{nx,n2) - 

/("i>«2)*^("i»«2)-  Tne g°aJ of image reconstruction is to find the impulse response of the re- 

covery filter, /(w,,^), which produces the best possible estimate ö(Kl5n2). 

If the noise, w(nx,n2), is negligible, then the recovery system can use an inverse filter to 

produce an estimate 0{nx,n2) = 6{nx,n2) which recovers the object exactly. Otherwise an opti- 

mum choice for a recovery filter is the Wiener filter. Inverse and Wiener filters are two tradi- 

tional types of linear image reconstruction filters. They both have scalar representations in the 

Fourier domain. Inverse filters simply invert the Fourier transform coefficients of the degrada- 

tion filter to recover the original object [15], [27]. Wiener filters are regularized versions of in- 

verse filters designed to operate in the presence of noise. They minimize the mean-squared error 

between the estimates they recover and the original object being imaged [21], [38], [44], [52]. 



This research shows that both inverse and Wiener filters can benefit from the symmetric convo- 

lution-multiplication property of discrete trigonometric transforms. The results derived here 

create new versions of inverse and scalar Wiener filters which exist in the transform domain of 

the trigonometric transforms. 

All scalar Wiener filters, including the traditional Fourier domain and new trigonometric 

transform domain versions, are approximations of more optimum vector or generalized Wiener 

filters [38]. A vector Wiener filter accounts for the off-diagonal elements present in the trans- 

form domain representation of the object correlation matrix. Vector Wiener filters provide better 

estimates than scalar Wiener filters [13], [14], but they are more computationally intense than 

scalar Wiener filters. Pratt [38] shows that the mean-squared error performance of vector Wiener 

filters in the transform domain is independent of the choice of transform. Different scalar ap- 

proximations of a vector Wiener filter will, however, yield different levels of performance based 

on how well the transform domain matrices underlying the filter approximate diagonal matrices. 

The trigonometric scalar Wiener filter derived here yields better performance than its Fourier 

counterpart because the discrete cosine transform yields a more accurate diagonal approximation 

of an object correlation matrix for a highly-correlated image than a discrete Fourier trans- 

form [27]. 

Traditional Fourier-domain scalar Wiener filters are computationally less intense than 

nonlinear iterative techniques, but suffer from poorer mean-squared error performance. The fil- 

ters which result from this research require fewer computations than Fourier scalar Wiener filters 

while demonstrating better mean-squared error performance. They thus provide one possible 

solution to the Air Force's overall problem of finding image reconstruction techniques which are 

computationally more efficient than nonlinear techniques, but which have better performance 

than existing linear methods. 
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This research effort represents the first time the symmetric convolution-multiplication 

property of discrete trigonometric transforms [34] has ever been applied to image reconstruction. 

The focus is therefore on applying the new technique to the most basic image reconstruction 

methods. To apply this new technique to create new versions of inverse and Wiener filters re- 

quires a few basic assumptions which must underlie the model of the basic imaging scenario. 

These assumptions involve the form of the filters which cause the degradation, the statistics of 

the object being imaged, and the noise in the model. 

The image reconstruction techniques of inverse and Wiener filtering are linear and shift- 

invariant. The techniques must therefore assume that the degradation is caused by a system 

which is also linear and shift-invariant. The implication of linearity and shift-invariance is that 

the form of the point spread function degrading the object is the same for each pixel of the ob- 

ject. This assumption is valid for real-world imaging situations [16]. The trigonometric inverse 

and Wiener filters derived here require knowledge of the point spread function of the degrading 

system. Fourier domain inverse and scalar Wiener filters also require a known point spread 

function. In practice the point spread function of the degrading system is often not known ex- 

actly. In many cases it can be modeled as a random process with reasonable assumptions made 

for its statistics. For example, if the distortion in an image is caused by atmospheric turbulence, 

then reasonable approximations to a wide variety of atmospheric point spread functions can often 

be found [40]. 

An additional limitation within the imaging model for this application of the symmetric 

convolution-multiplication property is related to the statistics of the object being imaged. The 

object statistics must be assumed to be wide-sense stationary and highly correlated. A wide- 

sense stationary object has a constant mean and an autocorrelation which depends only on the 

difference between the locations of the samples in an image [7]. If the vector 6 represents the 
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object sequence ^(n,,^), the mean of the vector 6 is the vector /x0. For a wide-sense station- 

ary object, the vector ne must first be constant with the same value for each of its elements. 

The second condition for the vector 9 to be wide-sense stationary is that the m-nth element of its 

correlation matrix, [Rge]mn, must only depend on the difference between m and n. An image 

with highly-correlated pixels will have only minor fluctuations in the values of its pixels in a 

small region. Both assumptions of wide-sense stationarity and highly-correlated pixels are nec- 

essary for the correlation matrix to become almost diagonal in the trigonometric transform do- 

main. A good scalar approximation of the filter will result if the correlation matrix becomes al- 

most diagonal in the transform domain. 

The imaging model also includes assumptions regarding the noise in the system. The 

model requires that the noise samples be zero-mean, additive, of uniform variance, uncorrelated 

with each other, and independent of the object. These assumptions imply that the amount of 

noise present in each pixel of the image is completely unrelated to both the object intensity and 

the amount of noise present in any other pixel. In most imaging situations, this noise model is 

not as accurate as one which assumes that the noise is an object-dependent Poisson random proc- 

ess [17]. The filtering techniques derived here do not use a more accurate Poisson noise model 

because this research provides a first look at the benefits of symmetric convolution to image re- 

construction. Earlier Fourier domain inverse and Wiener filters use exactly the same noise 

model as that assumed here. A logical next step for future research would be to extend the the- 

ory developed here to incorporate object-dependent photon noise. 

The assumptions made for the trigonometric transform domain filters derived here are the 

very same assumptions underlying traditional Fourier-domain filters. These assumptions allow 

the performance of the inverse and scalar Wiener filters for trigonometric transforms to be real- 
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istically compared to their traditional Fourier domain ancestors. The research performed for this 

dissertation represents the first time the symmetric convolution-multiplication property of trigo- 

nometric transforms has ever been applied to image reconstruction of any type, so the compari- 

son to earlier techniques is warranted. The performance results of these brand new trigonometric 

transform domain filters show that this technique appears to be promising. 

This research achieves its overall goal of applying the recently-developed symmetric con- 

volution-multiplication property of the discrete trigonometric transforms [34] to the traditional 

image reconstruction problems of inverse and Wiener filtering. The results extend the existing 

theory behind the symmetric convolution-multiplication property by recasting the problem into 

vector-matrix form and then demonstrating how discrete trigonometric transform matrices di- 

agonalize matrices which represent symmetric convolution. The development then presents 

vector-matrix forms of the symmetric convolution property for multidimensional asymmetric se- 

quences which represent the most general type of sequences encountered in image reconstruc- 

tion. The filtering of multidimensional asymmetric sequences is then possible because symmet- 

ric convolution is equivalent to multiplication in the transform domain for each of the underlying 

types of symmetry in an asymmetric image. 

The research presented here uses the newly-derived vector-matrix form of symmetric con- 

volution to calculate for the first time inverse and scalar Wiener filters in the trigonometric trans- 

form domain. The new forms of the inverse and scalar Wiener filters closely resemble their 

traditional Fourier domain counterparts. These results demonstrate how a scalar Wiener filter 

provides better mean-squared error performance for symmetric point spread functions while re- 

ducing the required number of computations. The trigonometric transform domain realizations 

use fewer calculations because the trigonometric transform of a real sequence is also all real. 

The Fourier transform produces complex sequences in the transform domain. 
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The remainder of this dissertation is organized as follows. Chapter II provides some back- 

ground on the discrete Fourier transform and its diagonalizing forms, inverse and Wiener filter- 

ing, and the symmetric convolution-multiplication property of discrete trigonometric transforms. 

The notion of how one and two-dimensional discrete Fourier transform matrices diagonalize cir- 

culant and block circulant matrices, respectively, serves as a comparison to similar diagonalizing 

results derived for the symmetric convolution-multiplication property of trigonometric trans- 

forms. The background on inverse and Wiener filtering in the Fourier domain will later be com- 

pared to new results for these filters in the trigonometric transform domain. The background on 

the symmetric convolution-multiplication property of trigonometric transforms is essential to 

understanding how this property is later extended theoretically and then applied to the inverse 

and Wiener filtering problems. 

All of the material presented in Chapter II summarizes previously conducted work, while 

the material in Chapters III - V represents the results of new work performed for this dissertation. 

In Chapter III, the symmetric convolution-multiplication property of discrete trigonometric trans- 

forms is derived using vector-matrix methods and then extended to multidimensional and asym- 

metric sequences. Chapter IV presents the derivation of one and two-dimensional inverse filters 

expressed in the trigonometric transform domain of symmetrically convolved sequences. Also in 

Chapter IV are derivations of one and two-dimensional trigonometric transform versions of sca- 

lar Wiener filters. Chapter V provides an example of recovering a distorted image using inverse 

and scalar Wiener filters and details the mean-squared error performance of the scalar Wiener 

filter. A conclusion appears as Chapter VI. 
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II. Background 

This chapter provides background on the discrete Fourier transform and its diagonalizing 

forms, inverse and Wiener filtering, and the symmetric convolution-multiplication property of 

discrete trigonometric transforms. The concept of how one and two-dimensional discrete Fourier 

transform (DFT) matrices diagonalize circulant and block circulant matrices will later serve as a 

comparison to similar diagonalizing results for the symmetric convolution-multiplication prop- 

erty of trigonometric transforms. In the second section, inverse and Wiener filters are derived in 

the Fourier domain. The traditional representation of these filters will be similar to new trigo- 

nometric transform versions derived in later chapters. The final section of this chapter intro- 

duces the symmetric convolution-multiplication property of trigonometric transforms. This 

chapter provides a baseline from which the property is later extended to a more general class of 

signals and then used to derive inverse and Wiener filters in the trigonometric transform domain. 

2.1 Diagonalizing Forms of the Discrete Fourier Transform 

The well-known circular convolution-multiplication property of the DFT [37] for one and 

two dimensions is reviewed in this section. One and two-dimensional DFT matrices are defined 

and then shown to diagonalize circulant and block circulant matrices, respectively. 

Hunt [23] was the first to observe that a DFT matrix diagonalizes a circulant matrix which 

performs circular convolution. Consider two finite one-dimensional sequences, h{n) and 6{ri), 

which equal zero outside the interval 0 < n < N -1. The circular convolution of the two se- 

quences is expressible in vector-matrix notation as d = h© 0 = Hc0, where © represents circu- 

lar convolution. The Nx N matrix Hc is circulant as indicated by the subscript 'C, and has the 
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vector h as its first column. Hunt proves that Hc is transformed into a diagonal matrix through 

the relation 

HC = WNVFWN (1) 

In Eq. (1), WN  is the N x N DFT matrix with m-nth entry 

[^'L=exp{-J2Nmn}> m>w= °»i> ■■■' N~i- 

Its inverse, WN , is the Nx N inverse DFT matrix with m-nth entry 

(2) 

(3) 

The N x N matrix #F in Eq. (1) is diagonal with the elements of the vector WN
xh along the 

diagonal. Hunt [23] shows that the elements of W^xh are the eigenvalues of Hc.  The boldface 

script notation indicates a matrix in the transform domain, while the subscript F' indicates the 

Fourier transform domain. Thus W^d = 7fFW^x6 or equivalently 

Wüld = (w?h)®(w?0), (4) 

where © represents a point-wise or Hadamard product [22]. Equation (4) is the one-dimensional 

circular convolution-multiplication property for the DFT expressed in vector-matrix form. 

Hunt's results extend naturally to two dimensions [24] using Kronecker (or tensor) prod- 

ucts [18]. The Kronecker product, ®, of an Mx x Nx matrix, A, and an M2 x N2 matrix, B, is 

A®B = Mio* 
0(JV,-1) 

1(W,-1) 

B [A 
[A]yu „B 

[AU-mB [^](M,-.)I* - [A J(M,-iXJV,-i) 
B 

(5) 

where [A]mn is the m-nth entry of the matrix A.  The Kronecker product A® B has dimension 

MjM2 x NXN2. In two dimensions, the lexicographically-ordered vector 0 = vec{<9} provides 
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an alternate means to express an JV, x N2 matrix, 0. The vec{«} operation converts the matrix 

into an NXN2 x 1 column vector of stacked transposed rows [24]. The vector-matrix expression 

for the two-dimensional DFT is then 

3F=(w-N]®W-Ny. (6) 

Note that it requires fewer calculations to compute #F = W^l0W^T, where <@F is the matrix 

representation of the lexicographically-ordered vector, 3F. This matrix form exists because the 

Fourier transform acts on the rows and columns of the matrix 0 separately [27]. The connection 

between the one and two-dimensional DFT is, however, easier to visualize from Eq. (6). Equa- 

tion (6) is also the only way to calculate the second order moments of the vector 9 in the trans- 

form domain when 9 is later modeled as a random vector. 

To extend his one-dimensional results to two dimensions, Hunt [24] defines the discrete 

two-dimensional circular convolution of two Nx x N2 matrices, H and 0, as a vector-matrix 

operation. The matrices Hand 0 represent finite two-dimensional sequences hin^r^) and 

9(nvn2) which are zero outside the region 0 < nx < Nx -1, 0 < n2 < N2 -1. The vector-matrix 

form of two-dimensional circular convolution is d = HBC6, where d and 9 are lexicographi- 

cally-ordered vectors. The matrix HBC is an NXN2 x iVjiV2 block-circulant matrix, which is a 

matrix of partitioned blocks of circulant matrices arranged in a circulant pattern. The first col- 

umn of the matrix HBC will be the vector h = vec{//}.  Hunt shows that the NXN2 x JVjiV2 two- 

dimensional DFT matrix, (^I
1®^2

1)> diagonalizes HBC.  Specifically, 

HBC = (WN1 ® WNi )VF(W^ ® W^l), (7) 
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where "%F is diagonal with the vector \W^ ® Wj^ )vec{H} along the diagonal. Equation (7) 

implies that 

{w^]®W^l)d={w^®W^h ®(WJ®W£)0, (8) 

which is the two-dimensional version of Eq. (4). 

The circular convolution-multiplication property of DFTs greatly reduces the number of 

calculations in image reconstruction problems which involve linear filtering. The computational 

cost savings in implementing Eq. (8) instead of d = HBC6 arises because it requires fewer com- 

putations to compute the transforms, point-multiply the results, and then apply an inverse trans- 

form than it does to compute the large vector-matrix multiplication directly. Note that the DFT is 

not a unique transform for implementing filtering operations in the transform domain. This re- 

view of the diagonalizing forms for the DFT matrix has established a reference point from which 

to analyze and later apply the results of more recent developments in the diagonalizing forms of 

the trigonometric transforms. 

2.2 Signal and Image Reconstruction in the Fourier Domain 

The vector-matrix diagonalizing forms of the previous section play an important role in 

deriving traditional Fourier domain inverse and Wiener filters. These filters can reconstruct one- 

dimensional signals and two-dimensional images which are degraded by linear processes. This 

background material on inverse and Wiener filtering in the Fourier domain will later serve as a 

comparison to similar, but improved versions of these filters derived in the trigonometric trans- 

form domain. 

2.2.1 Inverse filtering. The derivations of inverse filters for one and two dimensions in 

the Fourier domain are presented in this subsection. The one-dimensional circular convolution- 
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multiplication property in Eq. (4) is valid for any TV x 1 vectors d, h, and 6, which represent TV- 

point sequences d(ri), h(ri), and 6{n). All three sequences equal zero outside the interval 

0 < n < N -1. In one-dimensional signal reconstruction, the vectors and sequences take on spe- 

cial meaning beyond that of just being arbitrary sequences for which the circular convolution 

d = HCG holds. The sequence h(n) represents the finite impulse response of a linear shift- 

invariant filter which distorts a signal 9{n) to produce a data sequence d(n).  The goal of signal 

reconstruction is to obtain an estimate, 6{n), of 6(ri) from the corrupted data sequence d(ri). 

A notational variation of this problem is to replace the above sequences with vectors. The 

goal of the problem is to find the impulse response of a filter, represented by the vector/, which 

recovers the vector 0 from d, given knowledge of A. Because the underlying form of convolu- 

tion for the DFT is circular, the vector/can be represented as a circulant matrix, Fc, so that 

0 = Fcd - FcHcO.  The matrix Fc will recover the vector 6 exactly if Fc = Hc , or equiva- 

lently in the Fourier domain if 

WN?FWÜ1=[WNWFW-X]\ (9) 

It follows that "PF = r?^1. Both of the matrices "?F and #F are diagonal, and can be completely 

characterized by their elements ?F{k) &n&WF(k), so that Eq. (9) reduces to the scalar equation 

Mk)-^ky (10) 

for k = 0, 1, ...,N-l, provided "%F(k) * 0.  Recall that script letters denote transform domain 

quantities, and the subscript 'F' denotes the Fourier domain. Equation (10) is the one- 

dimensional inverse filter expressed in the Fourier domain. 
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The two-dimensional imaging scenario uses the NXN2 x 1 vectors d and 9 to represent a 

detected image and an original object, respectively. The vectors are lexicographic reorderings of 

the Nx x N2 matrices D and 0. The two-dimensional finite impulse response, H, of a system 

which distorts an object is its point spread function (PSF). The lexicographically-ordered vector 

h = vec[H] represents the PSF. As in the previous section, the vector h is the first column of 

the NXN2 x N]N2 block circulant matrix HBC. In the two-dimensional circular convolution re- 

lation, d = HBC0, the matrix HBC blurs the object to produce the distorted data. 

Just as in one dimension, this classical image reconstruction problem is to find the two- 

dimensional impulse response of a filter which recovers an estimate 6 from d, given h. The im- 

pulse response is represented by the lexicographically-ordered vector/. The two-dimensional 

convolution operation of the filter is implemented as a block circulant matrix, FBC, with the 

vector/as its first column. The expression to recover the estimate then becomes 6 = FBCd - 

FBCHBC0. The object vector 6 is exactly recovered if FBC = H~BC. This problem is commonly 

presented in the Fourier domain [27], [15] as 

(wNi ® WN2)?F(W^ <S> W£) = [(wNi ® WN1)VF{W-] ® W£)]~\ (11) 

From Eq. (11) it follows that "PF = 1¥pl, where both matrices are diagonal and can be represented 

by their diagonal elements ?F (kx, k2) and ^F (kx, k2).  The scalar form of Eq. (11) is thus 

9AkM=^WlT)' (12) 

for k{=0, 1, ...,#!-1; &2=0, 1, ...,N2-\; provided &F(kuk2)*0. Equation (12) is the two- 

dimensional Fourier domain inverse filter. Note its similarity to Eq. (10). 
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One limitation of inverse filtering in the Fourier domain [27], [15] is that for most practi- 

cal realizations, "%F(kuk2) takes on very small values for increasing kx and k2. These small 

values produce very high gains in ?F(kl,k2) at the higher spatial frequencies in Eq. (12). This 

problem becomes quite serious when the image model expands to incorporate noise with a uni- 

form power spectral density across all frequencies. The solution to this problem involves regu- 

larizing the high frequency gain of the inverse filter. 

2.2.2 Wiener filtering. The development of scalar Wiener filters for one and two dimen- 

sions in the Fourier transform domain is reviewed in this subsection. Wiener filters bear the 

name of Norbert Wiener who pioneered them in the 1940s during studies on time series analy- 

sis [52]. Helstrom [21] and Slepian [44] later applied Wiener filters to the image reconstruction 

problem. These filters introduce a degree of regularization to the inverse problem by minimizing 

the mean-squared error between the object estimate they produce and the original object. They 

have better mean-squared error performance than inverse filters when reconstructing noisy sig- 

nals or images. 

The data model of the previous sections must have an added term to incorporate noise so 

that the model now becomes d = Hc6 + w for the one-dimensional circulant case. In the new 

model, w is an N x 1 zero-mean uniform-variance noise vector whose samples are uncorrelated 

both with the object vector, 6, and with each other. The model assumes that the object vector, 

9, is also a random vector which will, in general, have a mean vector ju0 = E\0} - 0. The op- 

erator E\*} and the overbar,   • , are equivalent ways to denote expectation. The vector 6 will 

also have a covariance matrix Cee = El(d - pe){0- {i0) |. Under these assumptions, Wiener 

filters produce an estimate represented by the vector 6 which minimizes the expected value of 
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the square of the 2-norm of the error vector, s~0-0. If |£||   denotes the 2-norm of the vector 

s, then the linear minimum mean-squared error estimate, 0min, occurs at minl|f f2 | or equiva- 

lently min\sTs . 

Solutions to the problem of finding filters which recover 0 from «/under these conditions 

appear in many statistical signal processing texts [28], [43], [48]. The solution which follows is 

from [28] and is the linear minimum mean-squared error estimate which results from the Baye- 

sian Gauss-Markov Theorem under the conditions described above: 

0 = fie + CeeH
T

c[HcCeeH
T

c + cJ[\d-HcMo). (13) 

If the mean of the vector 0 is constant, then without loss of generality [28], the mean can be as- 

sumed to be the zero vector, 0, so that Eq. (13) becomes 

0 = ReeH
T

c\HcReeH
T

c + R^d. (14) 

In Eq. (14) the covariance matrices of Eq. (13) are replaced with correlation matrices defined by 

Rgg - 00T'.  In this case, Cee will equal Ree because of the assumption that the vector jue = 0. 

It is not difficult to derive Eq. (14) using standard vector-matrix minimization techniques 

as outlined in [38]. First observe that the goal of the problem is to find the filter which mini- 

mizes ||fi||2 =ETe =Tr\eTe\ = Trlse7). The operation Tr{«} denotes the trace of a matrix. 

The transpose denoted by the superscript T' is used because it is assumed that all sequence do- 

main quantities are real. Substituting 0-0 for the error vector, s, produces 

\42=Tr[E{{0-0){0-0) 

= TAE\00
T
 -00

T
 -00

T
 + 00

T
}\ . . 
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= TAE100
T
 -200

T
 + 00

T
\\. (15) 

The intermediate steps of Eq. (15) use the fact that for any two real vectors, TrjaArj = 

TrJAra} = bTa = aTb = Tr iaTb\ = Trj baT\. If Fc is the circulant matrix version of the one- 

dimensional impulse response of the reconstruction filter, then substituting for 6 = Fcd - 

FCHC6 + Fcw yields 

\ef2 =TÄE\e9T-2{FcHc0 + Fcw)9T +(FcHc6 + Fcw)(FcHce + Fcw)T}\. (16) 

After expanding and recognizing that because the object and noise are uncorrelated, w0T = 

0wT -0, an N x N zero matrix, Eq. (16) becomes 

\\42 =7r{Re0-2FcHcR0d+Fc(HcR0eHr + Rww)Fc}, (17) 

where Ree = 00T and R^ = wwT. The next step in finding the filter, Fc, which minimizes 

\\sf2, is to take the first derivative of Eq. (17) with respect to Fc which yields 

*L = -2ReeH
T

c + 2Fc(HcRggH
T

c + Rww). (18) 

Taking the derivative of Eq. (17) requires using the matrix derivatives dTx\XA j JdX = AT and 

dTrlxAXT\/dX = X(A + AT) = 2XÄ, if A is symmetric [54]. 

Setting Eq. (18) equal to the zero matrix and solving for Fc produces the filter which 

minimizes the mean-squared error between the original object and its estimate, 

Fc = ReeHc [HcReeHc + ^ww j   ■ (19) 
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(21) 

Equation (19) is exactly equivalent to Eq. (14) because 6 = Fcd. Converting Eq. (19) to the 

Fourier domain using Eq. (1), produces 

WN?FWj = ^K^^O"[K^^'J^K^F^
1
)" + K*] '■ (20) 

The superscript 'H' which denotes the Hermitian or conjugate transpose is now required because 

Fourier domain quantities are complex. Solving Eq. (20) for ?F and distributing the Hermitian 

operator results in 

= w^Reew-/^F[w-xwN^Fw-xRggw-/^;w^w-N
H+W-'R^W-/ 

where Wp = 7f*F because^ is diagonal. Equation (21) reduces to 

"?P = R-eFeF "%F \^F^0F0F ^F 
+ R-wF-uiF J   ' (22) 

where R@F@F = W^RgeW^H and RWp7l/p = W^lRwwW^H.  Equation (22) is the general or vector 

Wiener filter in the Fourier transform domain [38]. 

Note that in Eq. (22) the matrices "pF, 1?F, and &F are diagonal by definition, and the 

matrix RU/FWF is diagonal because of the assumption of uniform-variance uncorrelated noise 

samples. The matrix R0 e   will be approximately diagonal under the assumption of wide-sense 

stationarity for the object. The approximation arises because the discrete Fourier transform does 

not exactly diagonalize the symmetric Toeplitz form of the correlation matrix for a wide-sense 

stationary object [48]. The scalar equation which results from approximating R@ @   by retain- 

ing only its diagonal elements is then 
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SM*) = ^F{k) 2      • (23) 

1     '   <92
fw 

The terms 70p(k) and (9F(&) are the diagonal elements of R^ w  and R@ @   and represent the 

power spectral densities of the noise and object respectively. The terms ?F(£) and "7fF{K) are 

the elements of the diagonal matrices "?F and ^F. Equation (23) also uses the fact that 

Wpik^p(k) = \%F(k)\ . The Fourier domain filter in Eq. (23) is referred to as the one- 

dimensional scalar Wiener filter. Under the assumption of wide-sense stationarity for the object, 

it is a good approximation to the vector Wiener filter [38]. 

The extension of the preceding development to two dimensions is straightforward. The 

data model incorporating noise becomes d = HBCQ + w.  The JVj JV2 x NXN2 block circulant deg- 

radation matrix HBC has the lexicographically-ordered vector h = vec{//} which represents the 

PSF as its first column. The vectors d and 6 are NXN2 xl lexicographically-ordered vectors 

representing the data and the original object matrices D and 0 respectively. The lexicographi- 

cally-ordered vector w is an NXN2 x 1 zero-mean uniform-variance noise vector whose samples 

are again assumed uncorrelated both with the object vector, 6, and with each other. The object 

vector, 0, is again random. It has a constant mean vector pe, which equals 0 without loss of 

generality. The autocorrelation matrix of the vector 6 is Rge = 66T.  The linear minimum 

mean-squared error estimate represented by the vector 0 is then [28] 

0 = RedHBC\HBCR00HBC + Rww    d. (24) 

The only differences between Eqs. (14) and (24) are that in the two-dimensional case the degra- 

dation matrix, HBC, is block circulant, the autocorrelation matrix, Ree, is block symmetric 
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Toeplitz, and the vectors 6, 6, h, w, and d are all lexicographically-ordered. From Eq. (24) it 

follows that the two-dimensional impulse response of the reconstruction filter is 

*BC ~ -*w" ßc "Bc"ee"BC + ^ww 
i-i 

(25) 

i-i 

Expanding Eq. (25) using Eq. (7) produces 

"?F ~ *-0F0F^F "%F*-0F0F "*F +°1(iF1t/F       > (26) 

in the Fourier domain. As in the one-dimensional case, the vector Wiener filter of Eq. (26) is 

well-approximated by the scalar equation [15] 

?„(*„*,)=—?M^M—, (27) 

1 '    ®F(kM 

which retains only the diagonal elements of the matrices in Eq. (26). The terms 70F{]kx,k?) and 

€Pp{kx,k2) are the diagonal elements of R^^  and R@F@F which represent the two-dimensional 

power spectral densities of the noise and object respectively. The Fourier domain filter in 

Eq. (27) is the two-dimensional scalar Wiener filter for reconstructing a corrupted image in noise 

given knowledge of the degrading PSF which distorted it. 

The overall goal of this research is to derive new expressions for the one and two- 

dimensional inverse and scalar Wiener filters of Eqs. (10), (12), (23), and (27) which lie not in 

the Fourier domain, but which instead lie in the trigonometric transform domain. These filters 

will also employ the newly-developed symmetric convolution-multiplication property of trigo- 

nometric transforms [34]. To derive expressions for these filters in the trigonometric transform 

domain which employ this new property, it is necessary to first provide some background on the 

symmetric convolution-multiplication property itself. 
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2.3 Symmetrie Convolution and the Discrete Trigonometric Transforms 

This section provides background on the recently-developed symmetric convolution- 

multiplication property of discrete trigonometric transforms (DTTs) [34]. The material presented 

here serves as an essential baseline from which the property will be theoretically extended to a 

broader class of signals in later chapters and then applied to traditional inverse and Wiener filter- 

ing problems. 

The discrete cosine transform was first introduced in 1974 [1]. Since then it has been ex- 

panded into an entire family of trigonometric transforms [26], [39] consisting of sixteen DTTs 

which are even and odd-length versions of the discrete sine and cosine transforms (DSTs and 

DCTs). The family lies at the heart of many image transform coding applications [27], [33], 

[39]. Although useful for transform coding, the DTTs have not proved very useful in a wide va- 

riety of image filtering applications, because until recently no convolution-multiplication prop- 

erty existed for the entire family. 

Martucci [34] has recently developed a convolution-multiplication property for the family 

of DTTs. He defines symmetric convolution as the form of convolution for DTTs. His results 

are analogous to the circular convolution-multiplication property of the DFT [37]. The symmet- 

ric convolution-multiplication property states that an inverse trigonometric transform of the 

product of the trigonometric transforms of two sequences yields the same result as the symmetric 

convolution of the two sequences [34]. The symmetric convolution-multiplication property exists 

for forty different combinations of the sixteen transforms in the DTT family based on the under- 

lying symmetric periodicities of the different DTTs. 

There are four ways to symmetrically extend a finite sequence about a single point of 

symmetry. These are whole-sample symmetry (WS), whole-sample antisymmetry (WA), half- 
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sample symmetry (HS), and half-sample antisymmetry (HA). An example of each appears in 

Figure 2. Note that the point of symmetry for the WS sequence is the end point in the finite se- 

WS WA HS HA 

Ju   tl JTJ   o" . TTII IITT . ti 
F^ 

Figure 2. Four Ways to Symmetrically Extend a Finite Sequence [34] 

quence before extension, and the point of symmetry for the WA sequence is a zero which must 

appear after the end point before extension. The points of symmetry for both the HS and HA 

sequences lie one-half sample beyond the end points in each finite sequence before extension. 

There are 16 symmetric periodic sequences (SPS's) which result from symmetrically ex- 

tending a finite sequence to the left using one of the four ways and to the right using possibly a 

different way. A convention for naming each of the 16 SPS's is to label first the left symmetric 

extension and then the right symmetric extension. For example a WSHA sequence would exhibit 

whole-sample symmetry to the left and half-sample antisymmetry to the right. 

A finite sequence is converted into an SPS by applying a symmetric extension operator. 

For example, the WSHA extension of x(n), for n = 0, 1, ..., N -1, is 

x(n) = £WSHA{x(n)} = 
\x(n), n = 0, 1, ..., JV-1 

-x(M-n),     n = N,...,M-\, 
(28) 

where M = 2N-\.  The symmetric extension operator eWSHA {.} is one of sixteen different 

symmetric extension operators - one for each type of SPS. If x is a column vector whose indi- 
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vidual entries are x{ri), then Eq. (28) is equivalent to the vector-matrix equation, x = EWSHAx, 

where x is an Mx 1 column vector. The MxN matrix EWSHA is defined by 

X — E]¥SHAX - 

x(0) 

x(\) 

x(2) 

x(N-l) 

-x(N-l) 

-x(2) 

-*0) 

1 

-1 

-1 

0   -1 

' x(0) 

*(1) 

x(2) 

x(N-l) (29) 

The definitions of the remaining symmetric extension operators follow in a similar fashion. 

Each of the 16 DTTs has an underlying symmetry for both the input sequence and the out- 

put sequence in the trigonometric transform domain. This behavior is similar to the underlying 

periodicity of the input and output sequences for the DFT. The underlying input and output 

symmetries for each DTT as well as its form and other information appears in Table 1. The sub- 

scripts on each transform denote the type (from types I - IV) and whether the transform is even or 

odd. Note that unlike the previous notational convention, no subscript, TV,' indicating the length 

of the transform appears in the table. Omitting the subscript preserves space in the table, and this 

information appears in the columns for the input and output ranges. Also the constant kn which 

appears in the definition of the transforms should not be confused with the one-dimensional 

transform domain index, k, or with the two-dimensional transform domain indices, kx or k2. 

The form of each transform in Table 1 is slightly different from traditional representations 

of the DTTs [26], [39], [50]. Martucci [34] refers to the form in Table 1 as the convolution form 

of the DTTs and relates each transform to its representation in terms of the generalized discrete 
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Table 1. Forward Discrete Trigonometric Transforms 

Typ£ m-nth Entry 
Input 

Symmetry Range 
Output 

Symmetry Range 
Equivalent 
Transform 

6\e [CleL = 2*„co{=) wsws 0-»/V WSWS 0-»W ?0,0£» 

_ . (mm 
V N 

WAWA 1->N-1 WAWA 1+N-l Jro,oew 

<?2e [C2cL = 2cos(^±i> HSHS 0-»/V-l WSWA 0^ JV-1 #0,1EH 

fc.L=2sH      TV 
HAHA 0 -^iV-1 WAWS 1 -> JV ■#ai*. 01° HAHA 

&e [C3cL=2,„co(^L±i> WSWA 0-»/V-l HSHS 0-»7V-l &o£i ■ioen«fm 

[s3eL=2.„si„(^±^; WAWS l^TV HAHA 0-»/V-l #±0*1 SfWAWS 

6* [QL = 2cos(i^±f^i)) HSHA 0->7V-l HSHA 0->7V-l &±*A 

[54gL = 2sin(;r(m + g(" + ') HAHS 0-»7V-l HAHS 0->7V-l jfr 1±SHAHS 

el0 \CJ   =2k„cos(l^ WSHS 0->7V-l WSHS 0-»W-l YQfisW 

WAHA 1 ->7V-1 WAHA l->/V-l J9ofiew 

<?2o 
L 2»J™       •     {   2N-1   J 

HSWS 0-»/V-l WSHA 0->N-l ?0 \SHSWS 

:2sin -- 
27V-1   ) 

HAWA 0-»/V-2 WAHS 1-»AT-1 }9nLSHAWA 

<ho 
i 3ojm„       n     ^   27V-1   / 

WSHA 0 ->iV-l HSWS 0^-vV-l $10SWSHA 

L '»J™ ^    27V-1 
WAHS l^N-l HAWA 0->/V-2 7^1 osWAHS 

L 40jm„ ^        2N-\ 
HSWA 0-»/V-2 HSWA 0-»#-2 0±±£H 

I   4»J,„„ » ^ 2JV-1 j 
HAWS 0->7V-l HAWS 0-»7V-l J?±±eHAWS 

1/2,     n = 0 or TV 

1,        « = 1, 2, ..., 7V-1 
fl,       » = 0, 1, ...,N-2 

"    [1/2,   « = /V-l 

Fourier transform (GDFT) [3]. The GDFT operator, represented by the script character, $a b {•}, 

is expressible as a matrix with m-rrih entry 

[Gc,AM]mn=
exP[-J-^(m + a)(n + b)f> w, n = 0, 1, ...,M-\ (30) 
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The boldface character GaJ)M in Eq. (30) denotes the matrix which represents the operator, 

0aJ) {•}.  The subscripts 'a' and 'b' indicate the amounts of the shifts in the sequence and trans- 

form domains. The subscript 'M denotes the Mx M dimension of the transform matrix which 

results from extending the original sequence length so that M = 2N for N even or M = 2N-\ 

for N odd. Expressed in this form, each transform in Table 1 is equivalent to the GDFT of a 

symmetrically extended version of the finite input sequence with the same symmetry that under- 

lies the trigonometric transform. For example, ^e{/?(«)} =$0,o{£wsm{Hn)}}, where h(n) is a 

finite sequence which the type-I DCT assumes has WSWS underlying symmetry. These equiva- 

lent relationships also appear in the last column of Table 1 for each transform. The values of a 

and b in the GDFT for these cases are always either 0 or ^. 

Table 2 lists similar information to Table 1 for each inverse DTT. The second column of 

Table 2 lists the relationship between the forward and inverse transforms. 

Based on the underlying principles discussed above, Martucci [34] defines the symmetric 

convolution of two sequences, 6(n) and h{ri), as 

d(n) = *L(np1{m}® s2{m}], (31) 

where %L(n) is a rectangular window of length L which extracts the representative samples from 

the result. The operations sx{6{n)) and s2 {h(n)} create symmetric periodic extensions of the 

two sequences being convolved. The convolution operation '©' represents either circular or 

skew-circular convolution. The need to perform skew-circular convolution arises because in half 

of the forty cases of symmetric convolution, the two SPS's to be convolved are not strictly peri- 

odic, but are actually anti-periodic depending on the symmetric extension operator for that case. 
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Table 2. ] nverse Discrete Trigonometric Transforms 

Type 
Relation to 
Forward Matrix 

Input Output Equivalent 
Transform Symmetry Range Symmetry Range 

c1 
cr'-—c C"     2N  " 

WSWS 0->W WSWS O^N 9a,oewsws 

Su 
*'=2JV^ 

WAWA 1-»W-1 WAWA l-^N-l ~JVüfieWAWA 

6& crl-—c 11    IN  3e 
WSWA O^N-l HSHS 0-^N-l 9ol£WSWA 

s£ 
^'~2N 3e 

WAWS \^N HAHA 0-+N-1 ~JVol£WAWS 

e£ C~' -—C 
°3c     2NCl' 

HSHS O^N-l WSWA 0-+N-1 &±0SHSHS 

s£ 
*' = 2NSl< 

HAHA 0->N-l WAWS 1 ->N ~J¥lfiSHAHA 

e;l 
C"    INC" 

HSHA 0-ZN-l HSHA O^N-l $llEHSHA 

Ste 
S^ = 2NS*' 

HAHS 0->N-\ HAHS 0-»W-l ~j$l. IsHAHS 
2'2 

£o crl -    l   c ClD     2N-1   1O 

WSHS 0->JV-l WSHS O + N-l &0,0SWSHS 

Sxo 
^"2JV-1^ 

WAHA l+N-1 WAHA 1 -»iV-1 ~J$0,OeWAHA 

e?o (T1-     1     C C2°    2JV-1   3o 
WSHA 0-^N-l HSWS Q->N-I 

GQ^WSHA 

s£ 
^•~2tf-l*' 

WAHS 1->W-1 HAWA 0->N-2 ~J$al
eWAHS 

e£ cr1 -    l   c 30    2AT-1   2o 
HSWS 0->W-l WSHA 0->N-\ $3,flEHSWS 

s£ •r1 -    '    v 
^~2JV-1  2o 

HAWA 0-+N-2 WAHS 1-»JV-1 ~J$lfieHAWA 

eil er'-    l   c HSWA O^N-2 HSWA O^N-2 $lleHSWA 

S40 ^"Itf-A 
HAWS 0-5N-1 HAWS 0->N-l ~}9i.leHAWS 

The formula for circular convolution, denoted by ©, is well-known [37]. Skew-circular convo- 

lution is expressed as 

d(n) = 0(n)@h(n) 
n N-\ 

(32) 
= y   6{m)h{n-m)-J   0{m)h(n-m + N). 

m=0 m=n+\ 

Martucci's key result [34] is that Eq. (31) is exactly equivalent to 

rf(«-«0) = 73-
1{71{^(«)}-72 {h{n)}}, (33) 
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where ?„,{•} denotes one of the 16 DTT operators. The value of n0 equals either 0 or 1 indicat- 

ing that in some cases the multiplication and inverse trigonometric transform operations intro- 

duce a one-sample delay in the output. Table 3 lists all forty cases from [34] of the symmetric 

convolution-multiplication property, and identifies those cases where the output is delayed by 

one sample. 

Table 3. Forty Cases of Symmetric Convolution-Multiplication 
N even, M = 2N Nodd,M = 2N-l 

£i Si © % % V «0 £i EI ® -7, % V «0 

Swsws Swsws © e» eu et 0 
SwSHS EWSHS © elo &o et 0 

Swsws SwAWA © e. Su s;) 0 
EwSHS SWAHA © A. Su st 0 

SwAWA SWAWA © s„ Su -et 0 
SwAHA SwAHA © Su, Su -et 0 

SHSHS SWSWS © 6u Cu et 0 
SHSWS SwSHS © e2o Cu et 0 

SHSHS SWAWA © £. Su s;l 0 
SHSWS SwAHA © e2o Su st 0 

EHAHA SWSWS © *i. 6u s;l 0 
EH AW A EWSHS © s2o 4o st 0 

EHAHA SWAWA © Si, Su -et 0 
SHAW A SWAHA © s2o Su -et 0 

SHSHS SHSHS © &e e2< et 1 
SHSWS SHSWS © &o £„ et 1 

SHSHS EHAHA © eu s2e SÜ' 1 
SHSWS SHAWA © e2o s2o st» 1 

EHAHA EHAHA © s2e s2e -et 1 
SHAWA SHAWA 

© s2o s2o -et 1 

EWSWA EWSWA © e» e» & 0 
EWSHA EWSHA © &0 &o et 0 

EWSWA EWAWS © e< s» s;l 0 
EwSHA SWAHS © &o s,0 st 0 

EWAWS EWAWS © Su s* -et 0 
EWAWS SWAHS © sio Sl0 -et 0 

EHSHA EWSWA © eie e. et 0 
SHSWA EWSHA © <?4„ &o et 0 

EHSHA EWAWS © eie Su Sie 0 
EHSWA SWAHS © eio sl0 Si„ 0 

EHAHS EWSWA © sit &e st 0 
SHAWS EWSHA 

© Si„ e,0 Sio 0 

SHAHS EWAWS © s,c Su -et 0 
SHAWS SWAHS © Sio s,0 -et 0 

EHSHA EHSHA © e4e e« et 1 
EHSWA SHSWA 

© eio Ci, & 1 

EHSHA EHAHS © eie Sit st 1 
SHSWA SHAWS © &0 Sio st 1 

SHAHS SHAHS © sie Su -et 1 
SHAWS SHAWS 

© s4o Sio -et 1 

Each group of transforms in an entry of Table 3 performs convolution in the sequence do- 

main by transforming the two sequences, multiplying the results in the transform domain, and 

then taking the inverse transform to produce an answer in the sequence domain. Using the sym- 
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metric convolution-multiplication property results in a savings in computational complexity as 

fast algorithms exist for the DTTs [5], [39], [50]. The algorithms have the same computational 

complexity as the fast Fourier transform. 

The symmetric convolution-multiplication property of the DTTs requires implicit symme- 

try in the sequences being convolved. The underlying symmetry is analogous to the implied pe- 

riodicity required of sequences that are circularly convolved [37]. Martucci states [34] that the 

symmetric convolution-multiplication property he derives for one-dimensional sequences extends 

to asymmetric sequences if they are first decomposed into their symmetric and antisymmetric 

parts. This decomposition is straightforward in one dimension, but can be complicated in multi- 

ple dimensions because an asymmetric sequence must be decomposed into its symmetric and an- 

tisymmetric parts in each dimension across multiple lines, planes, or hyperplanes of symme- 

try [34]. 

The first section of this background chapter described how DFT matrices diagonalize cir- 

cular convolution matrices. The next chapter shows how to derive similar relationships where 

the DTT matrices presented in this last section diagonalize symmetric convolution matrices. 

When represented by matrices, the symmetric convolution-multiplication property extends more 

easily to both multidimensional and asymmetric sequences. The new matrix form of the sym- 

metric convolution-multiplication property then becomes the basis for deriving inverse and scalar 

Wiener filters in the trigonometric transform domain. These filters are shown to be similar but 

improved versions of the Fourier domain representations presented in the second section of this 

chapter. 
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III. Symmetric Convolution of Asymmetric 
Multidimensional Sequences 

An alternate method of deriving Martucci's [34] symmetric convolution-multiplication 

property of discrete trigonometric transforms is presented in this chapter. A vector-matrix form 

of the property is produced by this alternate method [9]. A new procedure is demonstrated of 

how the convolutional forms of trigonometric transforms can operate as matrices which diagonal- 

ize symmetric convolution matrices [11]. The diagonalized forms of the symmetric convolution 

matrices then allow the symmetric convolution-multiplication property to be easily extended to 

multidimensional and asymmetric sequences. 

3.1 Vector-Matrix Derivation of the Symmetric Convolution-Multiplication Property 

It is possible to derive the symmetric convolution-multiplication property for discrete 

trigonometric transforms (DTTs) using vector-matrix methods [9]. The result of the derivation is 

very similar to Hunt's result [23] for the discrete Fourier transform (DFT) presented as back- 

ground in the previous chapter. This alternate derivation provides a new look at the symmetric 

convolution-multiplication property for the DTTs, just as Hunt's result provided a vector-matrix 

proof of the circular convolution-multiplication property for the DFT. The derivation which 

follows relies heavily on his key result expressed as Eq. (1). 

The first step in the vector-matrix derivation of the symmetric convolution-multiplication 

property is to recognize the matrix relationship between the DFT and the generalized DFT 

(GDFT). An Mx M DFT matrix, W^\ defined in Eq. (2) is expressible in terms of each of the 

four forward and inverse GDFT matrices, GaJ)M and G~),M, from Eq. (30) where a and b equal 

0 or 4-. The DFT matrix relates to each of these GDFT matrices through an Mx M diagonal 
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matrix DM with elements [DM\ma=esp{j-flni\ for m = 0, 1, ...,   M-\.  The sizes of the 

transform matrices and the matrix, DM, which relates them are all Mx M since they operate on 

symmetric extensions of the sequences to be convolved. Recall that the original sequences to be 

convolved had length N, but the symmetric extension required to perform symmetric convolution 

increases their length to M = 2N for N even or M = 27V-1 for TV odd. The relationship among 

the four forward GDFTs is 

wr;=Gn 4DM = DMGn, „ = eJ™DMG1AMDM , (34) 

The inverse DFT matrix is expressible in terms of the inverse GDFT matrix for each case by in- 

verting the above expressions. All inverses exist so that 

WM = G0",U = FJG&M = GHMD" = e'iibD^Gt\MDM ■ 05) 

An additional convolution-multiplication property exists for the skew-circular convolution 

operation d = h®9 = Hs6, where Hs is an Nx N skew-circulantmatrix. That is, 

Hv 

A(0)       -h(N-l)   ■■■    -h(\) 

h{\) Ä(0)        •••   -A(2) 

h(N-l)    h(N-2)    •■■    Ä(0) 

(36) 

As mentioned previously, skew-circular convolution is the underlying form of convolution in 

half of the forty cases of symmetric convolution [34]. The convolution-multiplication property 

for skew-circular convolution is an extension of a result of Vernet's [49]. His result begins with 

the GDFT of 6{n) for a = \ and b = 0, 

&o{k) = ^0{e{n)} 

JV-1 

I 
n=0 

0(«)exp| -J2x^LL)n 
(37) 
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for k = 0, I, ..., N-\.  The subscript 'O'in the term 30(k) indicates the transform domain of 

the odd DFT as Vernet defines this transform. The skew-circulant convolution of two sequences, 

h(n) and 6{n), is exactly equivalent to the inverse odd DFT of the product of their transforms, 

"%0(k) and &0{k), or equivalently, 

d(n) = ^{^0(k)30(k)} 
N-l 

= j^2^^0(k)&0(k)&q^j27r- 
L\S\ (k + \)n 

N    J 

(38) 

i=0 

for M = 0, 1, ..., JV -1.  In terms of matrices, Martucci [34] generalizes Vernet's result for the 

inverse odd DFT to G;^N = jfG?AN = JrGo,i,N ■ 

Equation (38) implies that an odd DFT matrix diagonalizes a skew-circulant matrix Hs 

through the relation Hs = VN"»0V^.  The odd DFT matrix, V^1,   equals the N x N GDFT ma- 

trix, GlQN, where a = \ and b - 0. The matrix "%0 is diagonal with the elements of G±0 Nh 

along the diagonal. Thus, for skew-circular convolution, G± 0 Nd = I Gx 0 Nh\ © lG± 0 N9\. 

The matrix V^ is the odd DFT matrix which operates on symmetrically extended se- 

quences of length M. This matrix will diagonalize an M x M skew-circulant convolution ma- 

trix. Like the DFT matrix in Eqs. (34) and (35), the matrix V^ is expressible in terms of each of 

the four special cases of the Mx M GDFT for which a and b equal 0 or \. Here the relation- 

ships are 

VM
X = G0fiMD~J = GifiM = DMG0,MD-J = ej™DMGUM. (39) 

Again all inverses exist, so that 

VM = DMG^M = Gl]0M = DuG-\ A' = e-J^G;[MD-J. (40) 
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The matrices in Eqs. (34) and (39) and their inverses in Eqs. (35) and (40) will pre- and 

post-multiply the circulant and skew-circulant matrices underlying symmetric convolution as part 

of deriving the symmetric convolution-multiplication property of the DTTs. The result of this 

multiplication must be diagonal for each of the forty cases of symmetric convolution to show that 

the multiplication property holds. First, however, symmetric convolution must be expressed as a 

matrix operation. Equation (31) which used operator notation is equivalent to 

d = RLHMEl0, (41) 

which is expressed using vector-matrix notation. The vectors dandd are Lx\ input and output 

vectors. The matrix E{ is an Mx L symmetric extension matrix. The matrix HM is an MxM 

circulant or skew-circulant matrix with the vector E2h as its first column. The matrix RL = 

[lL 0], where IL is an L x L identity matrix, and 0 is an appropriately-sized zero matrix to 

make RLmLxM matrix. The length L equals N-\, N, orN + l depending on the type of 

symmetry implied and the different sizes for input and output sequences listed in Table 1. As 

before, the length M equals 27V for N even or 2N -1 for N odd. 

All of the symmetric extensions, shifts, additions, and multiplications of symmetric convo- 

lution in Eq. (41) can be captured in a single LxL matrix, Hsc = RLHMEX, so that d = Hsc6. 

The subscript 'SC denotes symmetric convolution, which is generalized in this derivation to any 

one of the forty cases of symmetric convolution. The form of the matrix Hsc will be different 

for each of the forty different cases. The goal of this alternate method of deriving the symmetric 

convolution-multiplication property is to show that an LxL diagonal matrix form, WT, exists 

for the symmetric convolution matrix, Hsc.  The subscript T denotes that the diagonal matrix 

7fr exists in the trigonometric transform domain. It will be shown that LxL trigonometric 
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transform matrices, represented, in general, by the matrix TL, cause this diagonalization. The 

matrix TL can represent any one of the sixteen DTTs. 

Before proceeding with the derivation, it is useful to present a summary of the three types 

of one-dimensional transforms discussed thus far in tabular form. This summary for the DFT, 

the odd DFT, and an arbitrary DTT appears in Table 4. All of the matrices related to the DFT 

Table 4. One-Dimensional Transforms 

Type 
Matrix Repre- 
sentation 

Underlying Form 
of Convolution 

Convolution 
Matrix 

Diagonal Form in 
Transform Domain 

DFT 
"M 

circular Hc *F 

odd-DFT 
*M 

skew-circular Hs Vo 

DTT TL 
symmetric Hsc WT 

and the odd DFT listed in Table 4 have dimension Mx M because they operate within the 

definition of symmetric convolution on symmetric extensions of the sequences being convolved. 

The trigonometric transform matrix, TL, and the matrices Hsc and #r all have dimension 

L x L because the individual DTT matrices can have dimension N-lxN-l, N x TV, or 

N +1 x N +1 depending on the choice of transform from Table 1 in the previous chapter. The 

dimension of each of the sixteen transforms is based on the underlying type of symmetry present 

in the sequence being transformed. Table 1 also listed the underlying symmetry and sequence 

length for each of the sixteen DTTs. 
« 

To proceed with the vector-matrix derivation of the symmetric convolution-multiplication 

property, the diagonal form of the matrix HM must next be substituted into Eq. (41). The matrix 

HM will be either circulant or skew-circulant depending on the underlying form of convolution 

in the particular case of symmetric convolution from Table 3 that Eq. (41) represents. Recall that 

Eq. (41) generically represents any one of the forty cases. Thus the appropriate substitution for 
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HM in Eq. (41) will be WMWFWj, where ?tF = dia.g\ WM
lE2h\ if the underlying form of con- 

volution is circular. The substitution for HM in Eq. (41) will be VM^0V^, where 90 = 

diag\V^lE2h\ if the underlying form of convolution is skew-circular. The diag{»} operation 

creates a diagonal matrix from a vector. Any of the equivalent expressions from Eqs. (34), (35), 

(39), or (40) then become allowable substitutions for W^, WM, V^\ o*VM in the result. With 

these substitutions, Eq. (41) becomes 

= RLG;l[dmg{G2E2h]GlEiei\ (42) 

= RLG;1[G2E2h © GlEl0\ 

The matrix ^u in Eq. (42) is either "%p ox"%0 depending on the underlying form of convolution. 

The three matrices, Gm, each represent one of the four special cases of an Mx M GDFT matrix 

for which a and b equal 0 or \. In some cases the matrix Gm may include multiplication by a 

factor of/ or -j.  This factor is necessary because of the relationship between each trigonomet- 

ric transform and the GDFT. 

The relationship between each DTT operator, 7{«}, and the GDFT operator, £,*{•}, is 

shown in Tables 1 and 2 for the forward and inverse transforms. One of Martucci's results [34] is 

that the DTT of a sequence can be expressed as a GDFT operating on a symmetrically extended 

version of the sequence. That is, 7{x(n)} = ^{^SE {*(«)}}, where sSE{'} is one of the sixteen 

symmetric extension operators, hence bearing the subscript 'SE'. The example was given in the 

previous chapter that &xe{x(rij) = $0,o{£wsws{x(n)}}- Another example which shows the 
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equivalence of a DTT to the GDFT is S4l{x(ri)} --j0A{sHAivs{x(n)}} from Table 2. Here the 

need for multiplication by a factor of -j is illustrated. 

An equivalence between DTT and GDFT matrices exists that is similar to the equivalence 

between DTT and GDFT operators. If the sequence x{ri) is expressed as an L x 1 vector x, then 

it can be symmetrically extended by the Mx L matrix ESE as demonstrated in the previous 

chapter. This extension produces the Mxl vector x = ESEx. Now multiplying the vector x 

by an Mx M GDFT matrix, GabM, will be exactly equivalent to multiplying the vector x by 

the MxL extended DTT matrix f.  That is, fx = GabMx = GabMESEx, so that the vector- 

matrix equivalent form of 7{x(n)} = ^{fsE {*(")}} is fx = GaJ)MESEx.  The tilde, ~, on the 

transform matrix, T, indicates that it is an extended-length transform. Normally a DTT matrix, 

TL, has dimension Lx L, but its Mx L extended version, T, has twice as many rows. The 

equivalence between DTT and GDFT matrices allows substitutions of the form Tm = GmEm, to be 

made in Eq. (42). These substitutions produce 

d = RLG^[f2h® 7|0]. (43) 

The portion of Eq. (43) inside the brackets results in an Mx 1 vector because of the point-wise 

multiplication. The vectors dmdh both have dimension Lxl, but are transformed into Mxl 

vectors by the Mx L transformation matrices 7[ and f2.  The Mxl vectors fß and f2h will 

both represent symmetric periodic sequences (SPS's). They will be SPS's because the DTTs re- 

quire an implied symmetry associated with both their input and output sequences. Just like the 

input and output sequences to a DFT are periodic, the input and output sequences to a DTT are 

symmetric periodic. The product of any two SPS's is itself an SPS, so that the point-wise product 
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f2h © fx0 will also represent an SPS. Because the product f2h © fx0 has dimension Mx\, it 

will have twice as many samples as the L samples which are needed to completely characterize it 

as an SPS. The L samples which completely characterize the vector f2h © fx0 are analogous to 

the samples which characterize a periodic sequence by its fundamental period. Since the vector 

T2h © Tx0 can be completely characterized by L samples, the M x L matrices fx and f2 in 

Eq. (43) can be reduced to their standard L x L size represented by Tx and T2.  A third MxL 

symmetric extension matrix, E3, can then symmetrically extend the result of the Zxl point- 

wise multiplication T2h © Tx0.  Making the substitution f2h ®TX0 = E3[T2h © Tx9] in 

Eq. (43) produces 

d = RLG;xE,\T2h © TO] 

= RLTfl[T2h®T10], 

by recognizing that G3~1E3 = Tf1. The effect of the LxM matrix RL is to retain the first L 

samples of the Mx 1 vector T^1^/* © Tx0\. These L samples are the same which result from 

reducing the MxL matrix T3 in Eq. (44) to its standard Lx L size represented by T3.  Thus 

d = T3~
l[T2h ®TX0], (45) 

where Tx, T2, and Tf1 represent Lx L trigonometric forward and inverse transforms. Equa- 

tion (45) is the symmetric convolution-multiplication property of the discrete trigonometric 

transforms expressed in vector-matrix notation. An alternate and sometimes more useful method 

of expressing the result in Eq. (45) is 

d = T3~^TTx0. (46) 
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The LxL diagonal matrix ^fT equals diag{r2A}, where the subscript T' again indicates the 

trigonometric transform domain. 

The preceding general procedure allows for the derivation of any one of the forty versions 

of symmetric convolution in Table 3 using vector notation. The key to deriving any particular 

case is to make the appropriate substitutions for each Em and Gm in Eqs. (41) - (44) which will 

yield the correct three transforms, Tm, in Eqs. (45) and (46). The appropriate substitutions for 

Em and Gm for each of the forty cases appear in Table 5. Note that the entries in the table tem- 

porarily suppress the subscript 'M' indicating the dimension of the transform since all GDFT en- 

tries have dimension Mx M. Note that some inverse transforms in the table have the form 

**o! M 
or ^i'iM' where the T indicates a whole-sample delay. These delaying forms of the 

2' 

GDFT result from the expressions GQ
:

Qu D2
M - GQ J M and GlQMejMDM = GllM. They occur in 

each case where a one-sample delay occurs in the symmetric convolution output in Eq. (33) for 

the cases where n0 = 1. 

As an example of how to derive one of the forty types of symmetric convolution, consider 

the case where the N x 1 vectors h and 6 have WSWS and HSHS symmetry, respectively. In 

this case 

d = RLHcEHSHS6, (47) 

where Hc is an Mx M circulant matrix with the Mx 1 vector Ewswsh as its first column. The 

matrix Hc is then replaced by Wu^fFW^, where &F = diag\w^1 Ewswsh^. The facts from 

Eqs. (34) and (35) that WM = G;\uDj}, W^ = DMG^M, and W~J = G0fiM allow Hc to be 
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Table 5. Substitutions in Eqs. (41) - (44) used to 

Neven,M=2N Nodd,M=2N-l 

3 E
2 

Ei 
G> G2 

GlX 
% E2 

E
I G, G2 G3' 

Ewsws Ewsws Ewsws Go,o <V <V EWSHS EWSHS EWSHS Go,o Go,o <V 
Ewsws EWAWA EWAWA <V JGo,o -K EWSHS EWAHA EWAHA <v JGo,o -^0 

EWAWA EWAWA EWSWS JGo,o JGo,o -<rl 
0,0 EWAHA EWAHA EWSHS ;'Go,o JGo,o -

G
:0 

EHSHS Ewsws EWSWA 
% 

Go,o G\ 
0.T 

EHSWS EWSHS EWSHA Go, Go,o G~\ 

EHSHS EWAWA EWAWS 
% ^0,0 -K EHSWS EWAHA EWAHS 

% ;G0,O -K 
EHAHA EWSWS EWAWS 

j% 
Go,o -jGi EHAWA EWSHS EWAHS j% Co,o -K 

EHAHA EWAWA EWSWA 
JGo,i ^o.«, -G-\ EHAWA EWAHA EWSHA 

j% JGo.o -K 
EHSHS EHSHS EWSWS 

% % 
Gö\ EHSWS EHSWS EWSHS 

% % ^ 

EHSHS EHAHA EWAWA 
% J% -K EHSWS EHAWA EWAHA 

% J% ~K 
EHAHA EHAHA Ewsws 

J'% j% -Go\ EHAWA EHAWA EWSHS 
j% j% ~GZ 

EWSWA EWSWA EHSHS Gio % 
Gt EWSHA EWSHA EHSWS 

% % 
Gi 

EWSWA EWAWS EHAHA 
% j% -K EWSHA EWAHS EHAWA 

% JGi,o -K 
EWAWS EWAWS EHSHS 

j% JGi,o -<v EWAWS EWAHS EHSWS JGi,o jGi,° -Grl 
EHSHA EWSWA EHSHA 

2'2 

Gio 
G:\ 

2'2 

EHSWA EWSHA EHSWA 
2»2 % 

G'A 
2'2 

EHSHA EWAWS EHAHS 
2'2 J'Gi.o -J

G
;[ 
2>2 

EHSWA EWAHS EHAWS 
2'2 JGio 

2>2 

EHAHS EWSWA EHAHS JG„ 
2>2 

<V -J
G

A 
2'2 

EHAWS EWSHA EHAWS Mi 
2'2 <V -JGl\ 

2>2 

EHAHS EWAWS EHSHA JG±1 
2'2 J% -G'A 

2.2 
EHAWS EWAHS EHSWA JG„ 

2'2 j% 2>2 

EHSHA EHSHA EHSHS 
2'2 

G„ 
2>2 

Gi EHSWA EHSWA EHSWS G±1 
2'2 

G1± 
2'2 

Gi 
EHSHA EHAHS EHAHS G„ 

2'2 
JG„ 

2<2 -'ai EHSWA EHAWS EHAWA GX1 
2'2 

JG.L 
2.2 -K 

EHAHS EHAHS EHSHS JG1L 
2>2 

JG„ 
2'2 -K EHAWS EHAWS EHSWS yGlx 

2'2 

yG1± 
2'2 -K 

rewritten as Hc = G^MD^FG^M, where WF = DMdiag{GafiMEwswsh}. Equation (47) then 

becomes 
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d = HLG-[ M\tiag{GOfiMEwswsh}Go±MEHSHS0 

= RL
G

ü,\M\
G

^M
E

WSWS
11
 ® GoiMEHSHS0 

-RLG-0{jfXeMh®c2eMe\ 

= RLGö\,MEWSWA[Cle,Nh   0 C2e,N0] 

= C-2lN[C^Nh®C2eNe\ (48) 

The matrix RL retains the first N samples of the Mx 1 vector C2lM\cie Nh © C2e NÖ\. An al- 

ternate way to express the result of Eq. (48) is in the matrix form 

d = Cw#T/:letN0, (49) 

where the JV x A^ diagonal matrix 7tTjs = diag[C]e Nh}.  The lowercase subscript's' indicates the 

vector CXeNh has whole-sample symmetry in the transform domain. The end results of Eqs. (48) 

or (49) are exactly equivalent to the same case of symmetric convolution expressed using opera- 

tor notation in Table 3. 

By making the appropriate substitutions from Table 5, the remaining 39 cases of symmet- 

ric convolution are just as easily derived. The vector-matrix derivation presented here is there- 

fore equivalent to all forty cases of the symmetric convolution-multiplication property of the 

DTTs which Martucci [34] derives using operator notation. 

3.2 Extension to Multiple Dimensions 

An advantage to deriving the symmetric convolution-multiplication property in terms of 

vectors and matrices is that for orthogonally-sampled data in multiple dimensions, the results of 

the previous section extend naturally using Kronecker products as defined in Eq. (5). Data which 

are orthogonally sampled in two dimensions have their samples aligned on a unit-square grid. 

Before extending the results of the previous section, diagonalizing forms for the two-dimensional 
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odd DFT are presented. The two-dimensional odd DFT is used in cases where skew-circular 

convolution is the underlying form of convolution in symmetric convolution. These diagonaliz- 

ing forms lay the groundwork for the presentation which follows on two-dimensional forms of 

the previous section's results. The case of multiple dimensions higher than two is also consid- 

ered in this section. 

A result similar to the diagonalizing form of two-dimensional circular convolution in 

Eq. (7) exists for two-dimensional skew-circular convolution based on the two-dimensional odd 

DFT. In this case HBS is an NxN2xNlN2 block skew-circulant matrix of partitioned blocks of 

skew-circulant matrices arranged in a skew-circulant pattern. Odd DFT matrices will diagonalize 

the two-dimensional skew-circulant convolution matrix, HBS, through the relation 

HBS=(VNI ®VNI)V0{Vü]®V-N^. (50) 

The matrix W0 equals diagj^^F^W, where h = \ec{H}, the lexicographic representation 

of a system point spread function (PSF), H. Thus the two-dimensional skew-circular convolu- 

tion-multiplication property is 

(v-Ni®v-N
xy=(v-N]®v-ty ®(v-]®v-y, (5i) 

which is similar to Eq. (8). 

The possibilities also exist for a matrix of partitioned blocks of circulant matrices arranged 

in a skew-circulant pattern, HSxC, or a matrix of partitioned blocks of skew-circulant matrices 

arranged in a circulant pattern, HCxS. The N^ x NXN2 matrices HSxC and HCxS operate on 

lexicographically-ordered vectors which represent matrices. The subscript 'SxC ' indicates that 

the matrix HSxC operates on the samples corresponding to the rows using circular convolution 
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and on the samples corresponding to the columns using skew-circular convolution. The converse 

is true for the matrix HCxS. The diagonalizing forms of these particular cases respectively are 

Hs,c = K ® WNi)V0XF{V-N] ® W~l), (52) 

and HCxS=(wN®VNiyFx0{w-N]®V-^. (53) 

In Eqs. (52) and (53), the NxN2xNxN2 matrices "%0xF and "&Fx0 equal diagHv^ ®W^l)h\ 

and diagjfl^1®^1)/*}, respectively. 

The problem of calculating the two-dimensional symmetric convolution of two Lxx L^ 

matrices, H and 0, can be made less computationally intense by the above diagonalizing forms 

of block circulant matrices, block skew-circulant matrices, or combinations of the two. The ma- 

trices H and 0 have dimension Lx x L^ because in general Lx equals either Nx -1, Nx, or 

Nx + l and L^ equals either N2 -1, N2, 
or ^2 +1 t>ased on the type of symmetric extension 

underlying the rows and columns of H and 0. 

An equivalent way to represent the matrices H and 0, is by the I^L^ x 1 lexicographi- 

cally-ordered vectors h and 0.  The two-dimensional form of Eq. (41) is thus 

d^R^R^H^E^E^e. (54) 

The matrices RL and R,   have the same form as RL from before, which is  RL = \IL   Ol and 

R, =[/r   0|. The L^x MXM2 windowing matrix (R^^RJ) thus retains Lx samples from 

each column and L^ samples from each row. The symmetric extension matrices EXc and EXr 

operate on the rows and columns of 0 separately giving it possibly different symmetry in hori- 

zontal and vertical directions. The dimensions of EXc and EXr will be Mx x Lx and M-^^xI^, re- 
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spectively, where Mx = 2NX for Nx even or Mx = 2NX -1 for Nx odd, and M2 = 2N2 for N2 

even or M2 = 2N2 -1 for N2 odd. The MXM2 x MXM2 matrix /7Ä can be either block circulant, 

block skew-circulant, or a combination depending on the underlying symmetry of the rows and 

columns of the Lx x L^ matrix H. The matrix HB will have the vector (E2c ®E2r)h as its first 

column. The matrices E2c andE2r will also have dimension Mx x Lx and M2xL2, respectively. 

They will perform a two-dimensional symmetric extension on the matrix H, just as the matrices 

EXc and Elr perform a two-dimensional symmetric extension on the matrix 0. 

As before in the one-dimensional case, all of the symmetric extensions, shifts, additions, 

and multiplications of two-dimensional symmetric convolution in Eq. (54) can be contained in a 

single ZjL, x £,£, matrix HBSC = [Rk ® R^ ^HB(EXc® EXr), so that d = HBSC6.  The subscript 

'BSC denotes block symmetric convolution. It also follows from the one-dimensional case that a 

diagonal form, 7fT, exists for the matrix HBSC.  The diagonalization in two dimensions is car- 

ried out using Kronecker products of the DTTs which have the form \TC L ®Tr,\ The I^x 1^ 

DTT matrix Tc L  acts on the samples of a lexicographic vector which represent the columns of a 

matrix. Similarly, the L2x L^ DTT matrix Tr ^ acts on the samples which represent the rows. 

A summary of the two-dimensional transforms discussed thus far appears in Table 6. All 

of the matrices in Table 6 related to the DFT or odd DFT have dimension MXM2 x MXM2 be- 

cause they act on symmetric extensions of matrices inside the definition of symmetric convolu- 

tion. The two-dimensional trigonometric transform matrix, I Tc ,®TrL\, has dimension 

IqZj x LXL2 because it acts directly on a lexicographic vector representing a matrix. The matri- 

ces HBSC and"%T in Table 6 also have dimension L^L^x L^. 
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Table 6. ' Vo-Dimensional Transforms 

Type 
Matrix Repre- 
sentation 

Underlying Form 
of Convolution 

Convolution 
Matrix 

Diagonal Form in 
Transform Domain 

DFT on rows and 
columns Ki®^:) circular for rows 

and columns 
HBC VF 

odd DFT on rows 
and columns (YM®VMI) 

skew-circular for 
rows and columns 

HBS -»o 

DFT on rows; 
odd DFT on col- 
umns 

(vM\®wM>) circular for rows; 
skew-circular for 
columns 

HSxC "OxF 

odd DFT on rows; 
DFT on columns 

(wM\®v-j) skew-circular for 
rows; circular for 
columns 

HCxS "'FxO 

DTT on rows and 
columns (TeA*TrA) 

symmetric for 
rows and columns 

"BSC VT 

The procedure to extend symmetric convolution to multiple dimensions follows a similar 

derivation as the previous section's derivation for one dimension. Here, substitutions from 

Eqs. (34), (35), (39), and (40) are made into the appropriate diagonal form in Eqs. (6), (50), (52), 

or (53). The DTT matrices which result from these substitutions appear in the two-dimensional 

equivalent of Eq. (45) as 

d = {T^®T^[(T2c®T2r)h © (7Ic®JIr)0]. (55) 

An alternate way to express Eq. (55) is 

D = T% 3c (T2cHT2
T

r)®{T,c0T?r) j-T (56) 

The two results in Eqs. (55) and (56) are equivalent because for any separable transform repre- 

sented by the matrix U, the vector xv - (uNi ® UNi \x is lexicographically equivalent to the ma- 

trix y,u = UN XXll,   [27]. The DFT, the odd DFT, and the entire family of trigonometric trans- 

forms are all separable. In Eqs. (55) and (56) the set of DTTs, <Tlr, T2r, r3~' \, which acts on the 

rows and the set of DTTs, J7jc, T2c, Tfc
l \, which acts on the columns must each come from one 

of the allowable sets of forty transforms in Table 3, but they need not be the same set. They may 
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be different because the matrices H and © may have different underlying symmetry in each di- 

rection. 

These same diagonalizing principles apply to higher dimensional data by cascading the 

Kronecker products in the diagonalizing equations. For example a Z)-dimensional circulant con- 

volution matrix acting on D-dimensional data of size Nx xN2x---xND is diagonalized by 

HCxCx...xC=[wN®WNi®- ®WND)WF{W-N]®W-1® - ®W^\ (57) 

where 7fp is diagonal with the vector (w^®W^2® ••• ®W^)h along the diagonal. In this 

D-dimensional case, there are 2D possible combinations of circulant and skew-circulant multiple 

sub-blocks in the block circulant structure of HB.  Also in this multiple dimensional case, the 

points of symmetry underlying the sequences in one dimension and the lines of symmetry under- 

lying the sequences in two dimensions become planes of symmetry in three dimensions and hy- 

perplanes of symmetry in more than three dimensions. In the next section, the behavior of sym- 

metric convolution is examined for cases where the sequences to be convolved do not possess the 

underlying symmetry required for the symmetric convolution-multiplication property of the 

DTTs to hold. 

3.3 Extension to Asymmetric Sequences 

Even though the symmetric convolution-multiplication property of the DTTs extends eas- 

ily to multiple dimensions, it is still limited by the underlying symmetry in the sequences to be 

convolved or multiplied in the transform domain. For multidimensional sequences, there must be 

symmetry in every dimension [34]. Martucci mentions [34] that asymmetric sequences can be 

decomposed into their symmetric and antisymmetric parts, transformed using different trans- 

forms because of the different underlying symmetry, and then multiplied. 
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This decomposition is straightforward for one-dimension, but can be complicated for two 

or more dimensions. A finite one-dimensional sequence, x(n), which is zero outside the region 

0 < n < N -1, can be decomposed as x{n) = xa{n) + xs(n) in two ways. Using whole-sample 

symmetry, 

xa(n)■ 
-i *(-»)» n<0 jx(-n), «<0 

o, « = 0 and *,(«) =" x(n), « = 0 

jx(n), w>0, jx{n), «>0, 

(58) 

where xa(n) has WA symmetry to the left and xs(n) has WS symmetry to the left. The symme- 

try to the right for xa(n) can be any one of the four types (WA, WS, HA, or HS) as long as the 

symmetric extension of xs(n) to the right cancels with it to yield x(n) = xa(n) + xs(n) which is 

zero outside the region 0 < n < N -1. For example if xa(n) has WAHS symmetry, then xs(n) 

must have WSHA symmetry. Similarly using half-sample symmetry to the left, 

\-\x{-n-Y),      «<0 \\x(-n-\),        n<0 

[jx(n), n>0, IT*("X n >0. 

Again the right-hand symmetry is arbitrary as long as the two types of right-hand symmetry for 

xa(n) and xs(n) cancel with each other for the two sequences. 

In two dimensions, there are four ways to decompose an orthogonally-sampled sequence 

using combinations of half-sample and whole-sample symmetry. Each decomposition must have 

four terms consisting of symmetric and antisymmetric parts in each dimension so that 

x(nl,n2) = x„(nl,n2) + xa(nl,n2) + xsa(nl,n2) + xa(nl,n2). (60) 

Definitions of the four terms for each of the four possible decompositions appear in Table 7. The 

orthogonal coordinate system axes form the lines of symmetry because of orthogonal sampling. 

These definitions exist for a sequence in the first quadrant, i.e., 0 < nx < N] -1, 0 < n2 < N2 -1. 
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«, < 0,«, <0 

nx < 0, n2 = 0 

«, <0,«2 > 0 

«, = 0,w2 <0 

= w2=0 

«! = 0,«2 >0 

Table 7. Decomposition of a Two-Dimensional 
Asymmetric Sequence into Symmetric and Antisymmetric Parts 

nx whole - sample symmetry, n2 whole - sample symmetry 

■*aa("i,«2) 

}x(-nx ,-n2) 

x(-nx,n2) 

nx >0,n2 <0 

K, > 0, n2 = 0 

«, > 0,«2 > 0 

«! <0,«2 <0 

«, <0,n2 > 0 

«, = 0, «2 < 0 

K, = 0,«2 >0 

«, > 0,w2 < 0 

«, >0,«2 >0 

x(nx,-n2) 

\x(nx,n2) 

Xas(»l,"l) 

■\x{-nx,-n2) 

[x(-nx,0) 

x(-nvn2) 

\x(nx-n2) 

|x(«,,0) 

\x{nx,n2) 

*ra(«i>"2) 

-\x(-nx,-n2) 

0 

}x(-nx,n2) 

-\x{Q-n2) 

0 

jx(0,«2) 

\x{nx-n2) 

\x(nx,n2) 

•^("l>"2) 

|x(-«„-«2) 
|x(-«1;0) 

\x(-nx,n2) 

|x(0,-«2) 

*(0,0) 

|X(0,H2) 

|x(«, ,-n2) 

|x(«„0) 

T*(«i>«2) 
«, whole-sample symmetry, n2 half-sample symmetry 

^(«i>«2) 

\x(~nx,-n2-\) 

\x(-nx,n2) 

\x(nx,-n2-l) 

\x(nx,n2) 

*<*("i>«2) 

■|X(-«„-H2-1) 

•|x(-«„w2) 

0 

?*(«, »-«2-1) 

r*(«i>«2) 

xSai.nx,n2) 

\x(-nx,-n2-\) 

\x{-nx,n2) 

-ix(0,-n2-l) 

T*(0>«2) 

-|X(H, ,-«2-l) 

T*(«i>«2) 

«, <0,K2 <0 

«,  < 0,«,  = 0 

nx <0,«2 > 0 

«, >0,«2 <0 

«, >0,K, =0 

«, > 0,«2 > 0 

«, < 0,K2 <0 

nx <0,n2 > 0 

*H(«i»»2) 

S-JCC-«!,-«-  —1) 

|x(-«,,«2) 

k(0,-»2-l) 

i*(0,«2) 
14«) ,-«2-l) 
T*(«i>«2) 

«! half-sample symmetry, n2 whole-sample symmetry 

xaa{nx,n2) 

}x(-nx-l,-n2) 

0 

-\x(-nx-\,n2) 

-\x(nx-n2) 

0 

\x{nx,n2) 

xaA^,n2) 

-\x(-nx-\,-n2) 

-±x(-nx -1,0) 

x(-nx-l,n2) 

\x(nx,-n2) 

\x{nx,Q) 

}x(nx,n2) 

xsa(nx,n2) 

-\x(-nx-\,-n2) 

0 

}x(-nx-l,n2) 

-\x(nx,-n2) 

0 

\x{nx,n2) 

*M(«i,«2) 

|x(-«,-l,-«2) 

ix(-«,-l,0) 

\x{-nx-\,n2) 

\x(nx-n2) 

|x(«„0) 

r*(«i,«2) 
K, half-sample symmetry, n2 half-sample symmetry 

*aa(«l>"2) 

|x(-«,-l,-H2-l) 

-\x(-nx-\,n2) 

*«*(«i,"2) 

--W-«i -1 ,-«2 -1) 

-!*(-«i-i.«2) 

xsa{nx,n2) 

x(-nx - \-n2 - 1) 

}x(-nx-l,n2) 

■*„(«], *2) 

!*(-«, - l,-«2 -1) 

^(-Mj-l.Wj) 
K, > 0, », < 0 -IxC«!,-^-!) r^C"i>—«2 —!) —|-x(«,,-«2-l) rx(»„-«2-l) 

«i^0»"2^0||x(/7„«2) tx(nx,n2) T*(«i>«2) \x{nx,n2) 

Similar definitions exist for sequences in other quadrants. This decomposition still applies to 

sequences which exist in more than one quadrant. The decomposition of a multiquadrant se- 
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quence requires it to be separated into subsequences which exist in the individual quadrants of 

the nx - n2 plane. The four subsequences must then be individually decomposed into their anti- 

symmetric-antisymmetric, antisymmetric-symmetric, symmetric-antisymmetric and symmetric- 

symmetric parts, and the results added. 

These concepts apply to orthogonally-sampled asymmetric sequences in three and higher 

dimensions as well. A three-dimensional sequence must be decomposed into eight symmetric 

and antisymmetric parts in each dimension. In general a D-dimensional sequence will have 2D 

components in its decomposition. A three-dimensional sequence will have planes of symmetry, 

and a £>-dimensional sequence will have hyperplanes of symmetry [34]. This multidimensional 

decomposition is very similar to the decomposition needed to implement a multidimensional Hu- 

bert transform [19], except here the phase is reversed by 180° instead of being rotated by 90°. 

In the previous discussion an alternate way to derive Martucci's symmetric convolution- 

multiplication property [34] was shown using vector-matrix notation and the property was ex- 

tended to the more general class of asymmetric multidimensional sequences. The focus now 

turns to filtering asymmetric multidimensional sequences in the trigonometric transform domain. 

3.4 A Filtering Example 

A problem that requires the convolution of multidimensional asymmetric sequences is 

modeling the effects of atmospheric turbulence on imaging systems [40]. This model provides a 

good example of a problem which requires multidimensional asymmetry to demonstrate the 

symmetric convolution-multiplication property for DTTs because models for atmospheric turbu- 

lence result in asymmetric point spread functions (PSFs). 

Figure 3 shows an example of a 256 x 256 PSF selected to model the effects of atmos- 

pheric turbulence on the aperture of an imaging system. The entire PSF appears in Figure 3(a). 
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h(nh n2) 

(a) Entire PSF 

haa(nx, n2) 

(c) Decomposed PSF, central samples, 
«! antisymmetric, n2 antisymmetric 

h(nu n2) 

(b) PSF, central samples 

has(nu n2) 

(d) Decomposed PSF, central samples, 
«! antisymmetric, n2 symmetric 

(e) Decomposed PSF, central samples,       (f) Decomposed PSF, central samples, 
«! symmetric, n2 antisymmetric «i symmetric, n2 symmetric 

Figure 3. Decomposition of Point Spread Function (PSF) 
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The central 32 x 32 samples appear in Figure 3(b) where the asymmetry is clearly evident. A 

direct transformation of this PSF into the trigonometric transform domain is not possible because 

of its asymmetry. The trigonometric transforms can only act directly on the decomposed sym- 

metric and antisymmetric parts of the PSF about both the nx and n2 axes. If h(nx,n2) denotes the 

PSF, the decomposition becomes 

h(nx,n2) = haa(nx,n2) + has(nx,n2) + hsa(nl,n2) + hss(nx,n2). (61) 

The decomposition in Eq. (61) is not direct since h{nx,n2) exists in all four quadrants of the 

nx - n2 plane. The correct decomposition technique is to decompose the portion of the PSF in 

each quadrant separately and then add the results having like symmetry. For example, the term 

has(nx,n2) in Eq. (61) which is antisymmetric in nx and symmetric in n2 would arise from the 

sum of the antisymmetric-symmetric portions of the whole-sample symmetric decompositions for 

each quadrant. The central samples of the decomposition of this PSF using whole-sample sym- 

metry for both nx and n2 appear in Figures 3(c)-(f). The antisymmetric-antisymmetric portion of 

the decomposition, Afla(»i,«2), appears in Figure 3(c), has(nx,n2) appears in Figure 3(d), 

hsa(nx,n2) appears in Figure 3(e), and hss(nx,n2) appears in Figure 3(f). Half-sample symmetry 

for either or both directions could have just as easily been chosen for this decomposition instead 

of whole-sample symmetry. The only impact to this example would be the choice of trigono- 

metric transform to apply later. 

Figure 4 shows the negative of a 256 x 256 pixel computer-generated rendering of an 

ocean reconnaissance satellite. The goal of this filtering example is to convolve this satellite 

object with the PSF in Figure 3 by converting each to the trigonometric transform domain, point- 

multiplying the results and then inverse transforming the product back to the spatial domain. 

Decomposing the object to be imaged into its symmetric and antisymmetric parts is unnecessary 

55 



Figure 4. Simulated Satellite Object 
(Negative Shown for Clarity) 

because the convolution shift property [37] allows for a shift of the object's origin. The convo- 

lution shift property states that if dx(ri) = h(n)*6{ri) and d2(n) - h(ri)*8(n -n0), then d2(n) = 

dx{n - nQ).  The shift of the object's origin allows the entire object to appear as if it were one 

fundamental period of a two-dimensional symmetric periodic sequence. The symmetric periodic 

extensions of the object are external to the object itself and therefore transparent to the problem. 

The symmetric periodic extensions of the PSF must, however, occur internally within the subse- 

quences h^n^n-t), has(nx,ri2), h^in^n^), and hss(nx,n2), and thus need to be accounted for. 

The DTTs imply an underlying symmetric periodicity in both the sequence and the trans- 

form domains in the same way that the DFT of a finite sequence implies periodicity in both do- 

mains. Therefore the implementation of a filter in the transform domain does not require the full 

symmetric extensions of either the object or the PSF. The symmetry is implied by the trigono- 

metric transforms just like the DFT implies periodicity. In fact since the symmetry of the four 

parts of the decomposition of the PSF must be accounted for internally for each subsequence, the 

filter needs only to retain the principal 128 x 128 values in the first quadrant of each part. These 
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parts in the first quadrant are designated by hr
a
r

a{nx,n2), hr
a
r

s(nx,n2), h^(nx,n2), and hr
s
r

s{nx,n2), 

where the superscript 'rr' indicates the filter right-half terms about both nx and r^. The 128 x 

128 right-half subsequences have the remainder of each array padded with zeros so their full 

sizes are all 256 x 256.  This process is the two-dimensional equivalent of retaining just the 

right-half samples of the filter impulse response and then zero-padding in the one-dimensional 

examples of [34] and [35]. 

With all underlying symmetry properly accounted for, trigonometric transforms must next 

be applied to the object and the decomposed PSF to perform symmetric convolution via multipli- 

cation in the transform domain. In this example the finite length of the object being imaged is 

even in both directions, i.e., Nx = N2 = 256, so any one of the eight even-length DTTs can be 

applied for each direction, nx and r^.  The same transform does not need to be applied for each 

direction. For this example let the matrix 0 represent the satellite object, and then apply a type- 

IIDCT to both the rows and columns of 0. The transform domain representation of the matrix 

0 thus becomes 0T = C2e N 0C2e N . All matrices in this expression have dimension 256 x 256. 

Thus far the filtering problem has allowed freedom to choose any type of symmetry in the 

decomposition of hin^n^.  There has also been freedom to choose any of the even-length trans- 

forms to apply to the object being filtered. In this example, whole-sample symmetry has been 

chosen in each direction for the decomposition of hiji^n^), and a type-II DCT has been chosen 

to transform both the rows and columns of the object. These two choices now dictate the type of 

transforms to apply to the individual components of the decomposition of the PSF, h(nx,n2). 

The choices also restrict which inverse transforms can be used to produce the convolved image. 

From Table 3 which specifies the types of symmetric convolution, there are only two allowable 

even-length cases of symmetric convolution which have a type-II DCT operating on one se- 
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quence and whole-sample symmetry in the other sequence. In vector-matrix form, the allowable 

cases are C2lNyCleNh © C2eiV0] for A whole-sample symmetric, and Sl]N\sieNh ®C2eN6)\ 

for h whole-sample antisymmetric. Thus the filter needs to apply a type-I DCT and a type-I DST 

to the appropriate symmetric and antisymmetric rows and columns of the decomposed subse- 

quences of h(nx,rij).  If Hr
a
r

a, H™, H"a, and H™ represent the 128 x 128 principal values of 

hm{nx,n2), has(nx,n2), h^in^n^), and h^in^n^) zero-padded to dimension 256x256, then the 

transforms to apply are 

»a"-     _ r. jrrr nl syrr     _ f-< TJrr VT 

"'Tfla — °le,MXIao0le,JV,' "T,os ~ ule,W,-f3ai°le,Af,' 
T (62) qjrr     _ c, JjrrrT j   ^rr    _ r JjrrftT 

^T,sa - *3le,JV1-
nra°le>JVj» duu   *T,ss ~ °le>JV1-

f,Ml-'le,JV2 ■ 

Each result in Eq. (62) must then be point-multiplied with 0T before inverting to return to the 

sequence domain. The final convolved result represented by the matrix D is thus expressible as 

the sum 

D = s£NU?r
T[aa © ®T]s-2lNi +c-2lNh^as © <ßT]s2lNi 
r i r i (63) + s;: M &?  © 0r \c;T

M + c_1 „ -&? © @T \c;T„. 

Figure 5(a) depicts the resulting image from Eq. (63). Figure 5(b) depicts the image result- 

ing from a conventional DFT multiplication to implement circular convolution. Note the simi- 

larity between the two images and the effects of blurring caused by atmospheric turbulence in 

each. The average absolute difference between the pixels in Figures 5(a) and (b) is 0.024 gray 

levels, which is 0.0094% of the total dynamic range of 256 gray levels. The maximum difference 

between any two pixels is 0.270 gray levels, which is 0.11% of the dynamic range. The very 

slight differences between the images is caused by the very small outer values in the PSF wrap- 

ping back into the image in a slightly different manner for circular and symmetric convolution. 
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(a) Turbulence effects applied using DTTs 
to implement symmetric convolution. 

(b) Turbulence effects applied using DFT 
to implement circular convolution. 

Figure 5. Degraded Satellite Image Showing the Effects of Atmospheric 
Turbulence on a 1 m Circular Aperture (Negative Shown for Clarity) 

To summarize the procedure used in this example and to implement the symmetric convo- 

lution-multiplication property in general, the following list of steps is provided: 

(1) Decompose the filter impulse response into parts having support only in a single 

quadrant (or orthant, if D > 2). 

(2) Decompose the parts existing in a single quadrant (or orthant) into antisymmet- 

ric and symmetric parts about each axis. 

(3) Add parts with like symmetry from each decomposition, retain only the first- 

quadrant values, and pad with zeros. 

(4) Apply a trigonometric transform to each dimension of the data. 

(5) Select appropriate transform relations from Table 3 based on the type of sym- 

metry selected in step (1) and the transforms selected in step (4). 
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(6) Apply the forward transforms to the impulse response matrices calculated in 

step (3). 

(7) Point-multiply each part of the decomposed and transformed impulse response 

with the transformed data from step (4). 

(8) Apply the inverse transforms determined from step (5) to each point-multiplied 

transform-domain sequence. 

(9) Add the results of the inverse transforms to yield the symmetrically convolved 

sequence. 

In this chapter, the results of deriving each of the forty forms of the symmetric convolu- 

tion-multiplication property for discrete trigonometric transforms has been presented by showing 

how the transforms diagonalize a matrix which represents the symmetric convolution operation. 

Derived in this manner, the symmetric convolution-multiplication property extends easily to 

multiple dimensions. The filtering of multidimensional asymmetric sequences is then possible 

because symmetric convolution is equivalent to multiplication in the transform domain for each 

of the underlying types of symmetry in an asymmetric image. The next step in this development 

is to seek filters in the trigonometric transform domain which remove the effects of blurring 

caused by PSFs which are similar to the PSF used in this example. 
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IV. Image Reconstruction Using 
Symmetric Convolution 

The theory developed in this chapter applies the symmetric convolution-multiplication 

property of the discrete trigonometric transforms (DTTs) [34] to the linear image reconstruction 

problem [10]. The presentation includes a derivation of one and two-dimensional inverse and 

scalar Wiener filters expressed in the trigonometric transform domain. For finite sequences, 

point-wise multiplication in the trigonometric transform domain is equivalent to symmetric con- 

volution in the sequence domain. Previous applications of the discrete cosine transform (DCT) 

to linear image reconstruction [26], [27] provided very good diagonal approximations for certain 

types of covariance matrices. The DCT cannot, however, simultaneously diagonalize the matrix 

representing degradation in the linear model. Now, with the symmetric convolution- 

multiplication property, very good scalar filter approximations are possible because an exact di- 

agonalization of the degradation matrix is achievable, while still retaining the near optimum ap- 

proximation to the diagonal form of the object covariance matrix. In this chapter, the specific 

forms needed from among the forty cases of symmetric convolution are first reviewed, and then 

the derivations of trigonometric one and two-dimensional inverse and scalar Wiener filters are 

presented. The next section also presents a subtle property on the equivalence of symmetric con- 

volution to linear convolution. 

4.1 Equivalence Between Symmetric Convolution and Linear Convolution 

Throughout the remainder of this dissertation, only four of the forty one-dimensional cases 

of symmetric convolution from Table 3 are considered. This section presents these cases along 

with the sixteen two-dimensional cases which result from applying the four cases to the rows and 
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columns of matrices. In the latter two sections of this chapter, these specific cases are used to 

derive inverse and scalar Wiener filters which recover an object from distorted data. The 

equivalence between symmetric and linear convolution for appropriately zero-padded sequences 

[34], [35] is first developed in this section. This equivalence between symmetric and linear con- 

volution is similar to the equivalence which exists between circular and linear convolution which 

also arises from appropriate zero-padding in the sequence domain [37]. 

The remaining theory presented in this dissertation requires only four of the forty one- 

dimensional cases of symmetric convolution from Table 3. These cases, expressed in vector- 

matrix notation, are 

da = S~2lM[s^Nhr
a © C2eN0], (64) 

d'a = -C2-eV[S^NK ® S2e>N0], (65) 

ds=C2lN[c^Nhr
s ®C2eJ,e\ (66) 

and d's = S2lN[cUtNhr
s © S2eJJ0\ (67) 

The vector 6 represents a one-dimensional sequence 0(n) which is finite and zero outside the 

interval 0 < n < N -1. It has underlying half-sample symmetry in both the left and right direc- 

tions (HSHS) in Eqs. (64) and (66) and underlying half-sample antisymmetry in both the left and 

right directions (HAHA) in Eqs. (65) and (67). Recall that the underlying symmetry for a trigo- 

nometric transform is similar to the underlying periodicity required by the discrete Fourier trans- 

form (DFT). The vectors hr
a and h[ represent the right halves of impulse responses which are 

whole-sample antisymmetric and whole-sample symmetric in both the left and right directions 

(WAWA and WS WS), respectively. These impulse response right halves, A^andAj, distort the 

vector 6 to produce the data sequences da, d'a, ds, and d's. The subscripts 'a' and 's' refer to 
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antisymmetric and symmetric parts and the prime superscript distinguishes between data vectors 

calculated using different cases of symmetric convolution. 

As previously demonstrated, symmetric convolution requires only the right half of a filter's 

impulse response, because the symmetry is required instead of implied. If the sequence repre- 

senting the impulse response of the system causing distortion, h(n), is not symmetric initially, it 

must be decomposed into its antisymmetric and symmetric parts, hr
a{ri) and hr

s(n), which are rep- 

resented by the vectors Ha and Hs. Then either Eq. (64) or (65) can convolve the symmetric part 

and either Eq. (66) or (67) can convolve the antisymmetric part [34], [35]. The four cases in 

Eqs. (64) - (67) are all based on the type-II DCT for even length sequences, represented by the 

matrix C2eN. The other matrix transforms in Eqs. (64) - (67) are CleN, SUN, and S2eN, which 

represent the type-I DCT, the type-I discrete sine transform (DST), and the type-II DST, respec- 

tively, all for even-length sequences. 

A matrix multiplication operation can perform symmetric convolution in the same way 

that a circulant matrix performs circular convolution. Multiplications by the diagonal matrices 

t¥Ta = diagjiS^ Nhr
a \ and #r s = diagjCle<Nh

rA replace the point-wise multiplications in 

Eqs. (64) - (67). The subscript T'refers to the trigonometric transform domain. These di- 

agonalizations result in the expressions 

da = S2e,N^T,aC2e,N^ = HSC,c,9> (68) 

d'a = -C^TA^O = H'SCfl9, (69) 

ds = C2e,N^T,sC2e,N0 = HScß> (70) 

and V = S£tNVT;S2ej<0 = HscA (71) 
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The matrices HSCja, H'SCfi, HSCtS, and H'SCs are symmetric convolution matrices for the four 

types of symmetric convolution of interest here. It is important to note that even though Hsc a * 

H'SCa and HSCs * H'SCs, with appropriate zero-padding in the sequences hr
a, hr

s, and 6 as de- 

scribed in [34] and [35], then da = d'a and ds = d's.  The equality of this vector representation is 

assured because of the equality which exists for the sequences da(ri) = d'a(n) and ds(n) - d's(ri) 

as demonstrated by Martucci [34]. Appropriate zero-padding assures that the symmetric convo- 

lution of the two vectors, h and 9, will equal the result from linear convolution. The equiva- 

lence of symmetric and linear convolution is completely analogous to the equivalence of circular 

and linear convolution which also results from appropriate zero-padding [37]. Thus, provided 

the vectors hr
a and h[ have the correct underlying symmetry and all sequences are appropriately 

zero-padded, the results of applying different types of symmetric convolution in Eqs. (68) - (71) 

are the same because they equal the result from linear convolution. 

The equivalence between symmetric and linear convolution applies in two dimensions as 

well. Consider the lexicographically-ordered vector, 6, representing the NlxN2 object matrix, 

0. Applying a type-II DCT to both dimensions represented within the vector 6 yields 

$T,ss={C2e,N®C2e,Ni)e (72) 

in the transform domain. The subscript 'ss' shows that the matrix 0 has underlying half-sample 

symmetry about both nx and n2 in the sequence domain (HSHS-HSHS). Equation (72) is the 

lexicographic equivalent of <BTss - C2eN 0CleNi used for the example in the last section of the 

previous chapter. 

Allow the Nx x N2 matrix, H, which can be viewed as a point spread function (PSF), to 

represent the other sequence to be convolved. Recall that the matrices H"a, H
r

a
r

s, H
r

s
r

a, andüT^ 
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r 
(73) 

represent the decomposition of H into its symmetric and antisymmetric parts. The superscript 

'rr' refers to the PSF's right halves about both nx and n2. If the vectors h"a, /£, A£, and tis
r

s 

represent lexicographic reorderings of the above decomposed components ofH, then the correct 

transformations to apply are 

C =(Su,Nl ®Su^)h:r
a,       6

r
T[as=(cle,N®Su,Ni)kc 

^a={^e,Nx ®Cu,Nl)Ka, and   *£, = (C^ <S> C,^ )h 

based on the different types of symmetry about the nx and n2 axes. The expressions in Eq. (73) 

are lexicographically equivalent to the expressions in Eq. (62) because each of the DTTs is sepa- 

rable [27]. Each result, ^aa, 4^s, Ar
T\sa, and 6r

T
r
ss, fromEq. (73) must then be point-multiplied 

with the vector &Tss before inverting to return to the sequence domain. If the lexicographically- 

ordered vector d represents the final convolved result, then 

+ fe ® C;U )[^ © & T.ss] + (<£„, ® C~lNi )[*£, ©,9r, 

which is lexicographically equivalent to Eq. (63). 

Just as in the one-dimensional case, the NXN2 x NXN2 diagonal matrices 

yT,aa = diag{^afl},        VT/a = diagj^}, 

^T,sa =diag{^M}, and <#Tja = diag{^}, 

(74) 

(75) 

can replace the point-wise multiplications in Eq. (74). The A^A^ x A^A^ symmetric convolution 

matrices for the two-dimensional case are thus 

HBSC,aa=(S;U ®^)^(CM, ®Cle,Nl\ (76) 

HBSC,as = \f2e,Nl ® S2e,N2 )^T,aS \f2e,N, ® C2e,N2 )> (77) 
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HBSCSC = (s£Nl ® C£Nj)wT,a{c2e,Nx ® C2eMi), (78) 

811(1 H
BSC,SS = (<£,„, ® C2U ^(c^ ® C2eiA,2), (79) 

where the subscript 'ÄSC indicates the matrices perform block symmetric convolution in two 

dimensions. 

Notice that Eqs. (76) - (79) apply the convolution rules from Eqs. (68) and (70), but these 

convolution rules are not unique since Eq. (69) produces the same result as Eq. (68), and Eq. (71) 

produces the same result as Eq. (70), as long as appropriate zero-padding exists for all sequences. 

Just as two representations yielded the same result in each of the two one-dimensional cases, 

there are now four representations which yield the same result for each of the four two- 

dimensional cases, producing a total of sixteen cases in all. The transform relation acting on ei- 

ther the rows or the columns in two dimensions may have an equivalent form from Eqs. (68) - 

(71) substituted for it. Thus the family of two-dimensional symmetric convolution matrices for 

the antisymmetric-antisymmetric portion of the decomposed PSF is: 

HBSC,aa = \Sle,Nx ® S2e,N2 j%T,aa [fle,^ ® C2e,N2 )> (76) 

H'Bsc,aa = -(<£,*, ®S;lNi)^aa(s2e>Ni ®C2eMi), (80) 

HBSC,aa = ~[S2e,N1 ® C2e,N2 J^Tjaa^e,^ ® S2e,N2 )' (8 *) 

and H£SCfla = (c£Ni ® C£Nj)^T,aa(s2e^ ® S2e^). (82) 

The family for the antisymmetric-symmetric portion is: 

HBSCOS = (C^, ® S2lNi yTfiS{c2e^ ® C2eß2), (77) 

HBSCjas ~ (^2^ ® $2e,N2 )^T,as\S2e,Ns ® ^2e,N2 )' (^) 

H'^scas = ~{c£Ni ® C2lNi )yTflS(c2eMi ® S2e>Ni), (84) 
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and HBSc,as = ~(s£Ni ® C^ )wTfiS{s2e^ ® S2eNi). (85) 

The family for the symmetric-antisymmetric portion is: 

HBSc,sa ={S2lN®C^Ni)^sa(c2e^ ®C2eyNi), (78) 

H'BSc,sa = ~(c£Nl ® C~lNi)»T^{s2eJli ® C2eJV2), (86) 

H'isc^={Sw®S2U)#TjC2ej*®S2ejii\ (87) 

and                                     H'^sa =-(c£Ni »^K»^ ®^). (88) 

The family for the symmetric-symmetric portion is: 

#asc.» = (<£,*, ® C^ )»^(c2e(Wi ® C2e^), (79) 

J9V» = «*, ® CIIN2 )wT,sS{s2e,Ni <8> C2e^), (89) 

H'BSCSS = (C2-«U ®^U^(c2eJVi 0^), (90) 

and #^ = (^ ^U)^^, ®^2^2)- (91) 

Here again none of the symmetric convolution matrices within a particular family are exactly 

equal, i.e. HBSCjaa & H'BSCßa & HBSCaa ^HBSCfia, HBSCßS ^HBSCßS *HBSCflS ^H'BSCßS, 

HBSCSC *H'BSC^a *HSsc^ *H'B"SCsa, and HBSCss *H'BSCss *H'B^SS *H'B"SCss. However, with 

appropriate zero-padding, the vectors daa = HBSCaa0, d'aa =H'BSCfla0, </£ =H'^Cßae, and 

<C = H'BSCaa0  WÜ1 a11 h& ^Ual> the VeCt°rS da> = HBSC,as^   *'„ = H^ß,   rf£ = H'^0,  and 

<C = HBsc,asö will all be equal; the vectors dsa = HBSC^6, d'sa = H'BSCsad, d'U = H'^6, and 

C = H'B'SCSCÖ will all be equal; and the vectors dss = HBSCtJ, d'ss = H'BSC^ß, d?s = H'^0, 

and d's"=HBSC ss6 will all be equal. The resulting sequences will also equal the sequence which 

arises from circular convolution with appropriate zero padding, because all are equal to the result 
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from linear convolution. The same vector d will result if any of the different equivalent forms in 

Eqs. (76) - (91) are substituted into Eq. (74), as long the vectors h and 9 are appropriately zero 

padded. All of the different forms of symmetric convolution in Eqs. (76) - (91) use the vector- 

matrix form [9] of Martucci's [34] symmetric convolution-multiplication property for trigono- 

metric transforms derived in the previous chapter. 

The equivalence of symmetric convolution to linear convolution as outlined in this section 

holds in the trigonometric transform domain for any linear shift-invariant filtering application. 

These results are applied in the following sections by recasting some traditional linear image re- 

construction filtering operations into the trigonometric transform domain. 

4.2 Inverse Filtering in the Trigonometric Transform Domain 

The results of the previous sections are valid for any finite sequences represented by the 

vectors d, h, and 0, which are all lexicographically-ordered for the two-dimensional case. The 

only underlying assumption was appropriate zero-padding to demonstrate the equivalence of the 

convolutional forms. In this section the vector d represents a detected image which arises from 

blurring an original object vector 6 by a point spread function (PSF) represented lexicographi- 

cally as h. The goal of the inverse filters derived in this section is to recover a vector estimate of 

the object, 6, from the vector d in the trigonometric transform domain. This classical problem 

as it applies to image reconstruction finds the two-dimensional impulse response of a filter, rep- 

resented lexicographically by the vector/, which recovers 6 from d, given knowledge of A. This 

is the same problem which generated Fourier transform domain solutions presented in Sec- 

tion 2.2 as background. The following subsections present equivalent representations in the 

trigonometric transform domain, first for one and then for two dimensions. 
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4.2.1 The One-Dimensional Inverse Filter for Trigonometric Transforms. The devel- 

opment of this subsection derives a result in the trigonometric transform domain similar to 

Eq. (10) which presented the one-dimensional inverse filter in the Fourier domain. Using the 

same notation as before whereby d = HO and 0 = Fd = FHO, understand that in this case the 

matrices H and F represent one-dimensional symmetric convolution matrices rather than circular 

convolution matrices. The notation here drops the subscript 'SC which was useful in previous 

sections to distinguish between symmetric and circular or skew-circular convolution. The dis- 

cussion from here forward concerns itself exclusively with symmetric convolution and trigono- 

metric transforms. The BSC subscripts will likewise not appear in two-dimensional block sym- 

metric convolution matrices, nor will the subscript T' appear in trigonometric transform domain 

quantities. 

The symmetric convolution matrices H and F may, in general, be asymmetric, which re- 

quires a decomposition into their symmetric and antisymmetric parts so that d = (Ha + HS)0 and 

0 = (Fa + Fs)d = (Fa + Fs)(Ha + Hs)6. (92) 

Expanding Eq. (92) and making substitutions from Eqs. (68) - (71) results in 

+ y~-2e,N^s^2e,N )\^^2e,N^a^2e,N ) + \^2e,N^s^-2e,N )[^2e,N'^s^-2e,N JW- 

(93) 

Equation (93) incorporates substitutions of the different equivalent forms of symmetric convolu- 

tion based on the assumption that the sequence domain data vector, d, is the result of linear con- 

volution. This assumption implies that sufficient zero-padding [34], [35] exists in the vectors h 

and 6 to ensure their equivalence. The innermost matrices inside each term of Eq. (93) multiply 

to identity, so that exact reconstruction to yield the vector 0 = 0, requires 

5^,-5^=/, (94) 
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and 7fl*,+7,*fl=0, (95) 

where/is an Nx N identity matrix, and 0 is an Nx N zero matrix. Because all the matrices in 

Eqs. (94) and (95) are diagonal, the equations are equivalent to the matrix equation 

(96) 

for k = 0, 1, ... , N-l.  The terms Wa(k), &s(k), ?a(k), and ?s(k) inEq. (96) represent the 

k-kth terms, [#fl]Ä, [»Jtt, [?fl]Ä, and[?,]tt, of the matrices &a,#s,?a, and?,, respectively. 

-??<,(*) tf,(*)1 r?awi T 
*,(*)  #fl(£)_ l?,(*)J 0 

Solving Eq. (96) for ?a(k) and ?s(k) yields 

?,(*) = 
-Va(k) 

and ?,(*) = 

(97) 

(98) 

Equations (97) and (98) are the one-dimensional inverse filter expressed in the trigonometric 

transform domain for symmetrically convolved sequences. If the sequence h(n) possesses 

strictly whole-sample symmetry, i.e., ha(n) = ^a(k) = 0, then the inverse filter reduces to 

1 
?,(*) = 

*,(*) 
(99) 

Equation (99) is similar to the Fourier domain result in Eq. (10). The following subsection 

shows similar results for two dimensions. 

4.2.2 The Two-Dimensional Inverse Filter for Trigonometric Transforms. In two di- 

mensions, H and F become two-dimensional block symmetric convolution matrices which may 

also in general be asymmetric. They therefore require a decomposition into their symmetric and 

antisymmetric parts about both the nx and n2 axes so that d = (Haa + Has +Hsa + Hss}9 and 
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e = (Faa + Fas + Fsa + Fss)d 

= (Faa + Fas + Fsa + Fss)(Haa + Has + Hsa + Hss)9. 

Expanding Eq. (100) and making substitutions from the equivalent forms in Eqs. (76) - (91) re- 

sults in 

HC2-<U ®C2e,N^aa{S2e,Nl ®^2)[fe ® ^UK(C2^ ® ^2^) 

+(s~lNi ® s£Ni )vas{s2e,Ni ® cleMi) 

+?4C^". ® ^J^ ® %lNi)vaa(s2etNi ® c2^2) 

-(<£*, ®^K(CM, ®c^2) 

+ ^(^^, ® C2e, J^U ® C2~«U W^". ® S2e> J 
+(s2^i ®c2-e

1
jAr2)^(52ejAfi ®.s2e>yV2) 

-(s-2l,Nl ® c2-^2)^(s2^ ® c2e, J] 

+7B(c2^1 ® c^K^U ® c2-lNi)waa(s2e^ ® S,^) 

- (<£,*, ® c2-e^ )^(c2c,Wl ® s2e>A,2) 

+ (<^U ® QUK(C2^ ® C2^2)]} 0. (101) 

Equation (101) incorporates substitutions of the different equivalent forms of the convolution 

matrices in Eqs. (76) - (91). The substitutions are permissible because of the assumption that the 

lexicographically-ordered data vector, d, arises as the result of linear convolution in the sequence 

domain. 
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For this two-dimensional case, the interior matrices in each term of Eq. (101) again multi- 

ply to identity, so that exact reconstruction requires 

aa"aa      'as    as     'sa    sa      ?ss    ss ' 

'aa^as     'as^aa     'sa^ss     'ss^sa      "' 

"3 It   — "3 "%   + "3 'S*    — IfZ   =0 'aa^sa     'as^ss     'sa^aa      'ss^as      "' 

and 

'?aa\K>'h) T 

?as\'C\>'h) 0 

"PsaiK'^l) 0 

'?ss\k\i'hJ'. 0 

(102) 

(103) 

(104) 

(105) 

(106) 

5aa **ji + 'as "sa + ?sa "as + ?ss ^aa ~ "■ 

Each matrix in Eqs. (102) - (105) is diagonal, which generates the matrix equation 

"aa(^l>^2/ ~**as\.kl>'h) ~™sa\K''h)       *ss\*\>'h) 

*as\*\>'h) "fla("i»^) ~**ss\'C\>k2) ~™sa\K>'h) 

^savK>'h) ~*ss\K>'h)        "aa\K''h) ~™as\K>'h) 

^ssy^li^l) *sa\K''h) **as\'i\>'h) "aaC^l'^). 

for ky = 0, 1, ... , JVj-1 and&2 = 0, 1, ... , N2-\.  The terms ^aa(kvk2), ^as{kx,k2\ 

Wsa{kx,k2\ -»ss(kuk2), ?aa(kl,k2), ?as{kx,k2\ ?„{kl,k2), and ?„(k1,k2) in Eq. (106) repre- 

sent the diagonal elements of the N^xN^ matrices "7faa, ^as, Wsa, Wss, ?aa, ?as, ^sa, 

and "Pss, respectively. Equation (106) has the solution 

9aa{kx,k2) = 
i     \*Hh>ki)+Vaa(kl,k2)w

2
as(kl,k2)+w^Kk^wliKh) 

*(kM    -vm(kl,k2wl(kl,k2) + 2'#as(kl,k2ya„(kl,k2)0ss(kl,k2\ 
■,   (107) 

,,     ,   , -1 \^as(h>K) + ^as(h>k2)^aa(h>K)~^as(K>K)^sa(k\>k2) ,,fto, 
"P (k,k1) = i r,    (iUö) 

7saK' 2    sikM] ^SK,K)^Kh)^^aaiKK)^aXKh^Ss{KK)) 

and   ?„(ki,k1) = 
l     \^l{KA)-^Ss{KA)^li.Kh)+^ss{Kh)^ls{KA)   } 

where the determinant of the 4x4 matrix in Eq. (106) is given by 

(110) 
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^(kuk2) = paa(k1,k2) + ^ss(kuk2)] +[»as(kuk2)-'Zsa(k1,k2)]2 

(r 12   r / <m> 

Equations (107) - (111) are the two-dimensional inverse filter for trigonometric transforms. If 

the sequence h(nx,n2) possesses strictly whole-sample symmetry about the nx and n2 axes, i.e., 

Kain\^2) = Waa(kx,k2) = 0, has{nx,n2) = ^(k^t,) = 0, and hsa(nx,n2) = Wsa(kx,k2) = 0, then 

the two-dimensional inverse filter reduces to 

««^-äüh)- (I,2) 

Equation (112) closely resembles its Fourier domain equivalent in Eq. (12). 

The trigonometric transform domain realizations of the inverse filter for symmetrically- 

convolved one and two-dimensional sequences expressed in Eqs. (97), (98), and (107) - (111) 

suffer from the same high-frequency gain problem which plagued their Fourier domain equiva- 

lent forms for noisy sequences. The problem becomes quite serious when the image model ex- 

pands to incorporate noise with a uniform power spectral density across all frequencies. In the 

next section, a method is presented of regularizing the high frequency gain of the inverse filter in 

the presence of noise. 

4.3 Wiener Filtering in the Trigonometric Transform Domain 

In this section, a derivation of the scalar Wiener filter is presented in the trigonometric 

transform domain [12]. A Wiener filter introduces a degree of regularization to the inverse 

problem and is more capable of filtering data models with noise, as explained in the background 

section on Wiener filtering in Chapter II. To incorporate noise into the data model of the previ- 

ous section, the model must have an added term so that it now becomes d = HO + w.  The matrix 

If is a symmetric convolution matrix for the one-dimensional case and a block symmetric convo- 
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lution matrix for the two-dimensional case. The vector w is again a zero-mean uniform-variance 

noise vector whose samples are uncorrelated both with the samples of the object vector, 9, and 

with each other. The vectors d and 6 represent finite sequences for one dimension and are lexi- 

cographically-ordered representations of finite matrices for two dimensions. The object vector, 

6, is itself random with constant mean vector fie - 6, which can be assumed to equal 0 without 

loss of generality [28], and correlation matrix Rge = 69T.  The Wiener filter seeks the vector 

estimate, 6, of 6 which minimizes the mean squared error, E
T

E, where the vector £=6-0. 

The solution to this problem from [28] appeared previously for circulant and block circu- 

lant matrices in the Fourier transform case. The equivalent to Eq. (14) for symmetric convolu- 

tion is 

0 = RggH
T[HRggH

T + Rww]~ld, (113) 

which produces the recovery filter 

F = RggH
T[HReeH

T + Rww]\ (114) 

Recall that the background section on Wiener filtering in Chapter II described vector and scalar 

Wiener filters in one and two dimensions expressed in the Fourier transform domain. In that 

case the matrices F and H were circulant for one-dimensional filters and block circulant for two 

dimensional filters. Here in the trigonometric case, the matrices F and H will represent sym- 

metric convolution matrices for one-dimensional filters and block symmetric convolution matri- 

ces for two-dimensional filters. 

The Fourier-domain scalar Wiener filters presented for background in Eqs. (23) and (27) 

for one and two dimensions under the assumption of wide-sense stationarity for the object, pro- 

vide a good approximation to the vector or generalized Wiener filter [38]. The approximation 
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arose because the discrete Fourier transform did not exactly diagonalize the symmetric Toeplitz 

form of the correlation matrix for a wide-sense stationary object [48]. Note that the noise is al- 

ready stationary because it has zero mean and its samples are uncorrelated with each other. 

In the derivations which follow in the trigonometric transform domain, the data vector, d, 

must arise as the result of a linear convolution of the object vector, 6, with the point spread 

function, h. This assumption of linear convolution allows the substitution of different equivalent 

forms of the two-dimensional convolution matrices from Eqs. (76) - (91) into the components 

which result from decomposing the matrix H in Eq. (114). In the one-dimensional problem, the 

one-dimensional convolution matrices from Eqs. (68) - (71) may be substituted. This assumption 

of linear convolution also exists in Fourier-domain derivations because the processes which gen- 

erate blurred data are linear and not circular in nature. Circular convolution arises because it is 

the underlying form of convolution for DFTs and it is convenient mathematically to process the 

data using DFTs. However, for the data to arise from linear convolution, the object must be 

zero-padded, but a zero-padded or support-constrained sequence cannot be wide-sense stationary. 

The assumption of linear convolution underlying the process which generated the blurred data 

thus seems to contradict the assumption of wide-sense stationarity for the object. 

Hunt and Cannon [25] addressed this conundrum, and their work is further refined in [51]. 

Their work chooses the more accurate nonstationary object model with support constraints to 

account for the zeros which must exist to be equivalent to linear convolution. A model without 

support constraints does not reflect the true statistics of the object. The correlation matrix of an 

object with support constraints has zeros which appear due to the zero-padding which must exist 

for linear convolution to appear. These zeros do not appear for an object without support con- 

straints. A model without support constraints is, however, more mathematically tractable be- 

cause it is well-approximated by a diagonal matrix in the transform domain [48]. In a support- 
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constrained model, a higher degree of correlation exists between frequencies in the Fourier do- 

main [36]. The purpose of this research is to find scalar filters which require good diagonal ap- 

proximations in the trigonometric transform domain. In this case it is better not to use support 

constraints in the model so that good diagonal approximations result. For vector filters, the sup- 

port-constrained nonstationary object model is better because it exhibits enhanced performance 

by incorporating the off-diagonal correlations into the filter design [14]. The choice of a model 

without support constraints is also more appropriate in this scalar filter derivation because this 

effort is the first attempt to apply the symmetric convolution-multiplication property to a Wiener 

filter. The original Fourier-domain Wiener filters were all unconstrained [15], [27], [28], [43], 

[48], so this choice provides a better comparison to earlier work. In the following discussion, the 

one-dimensional scalar Wiener filter for trigonometric transforms is derived first, and then its 

two-dimensional equivalent is presented. 

4.3.1 The One-Dimensional Scalar Wiener Filter for Trigonometric Transforms. The 

first step in deriving the one-dimensional scalar Wiener filter is to substitute the decomposed 

symmetric convolution matrices F = Fa +FS and H = Ha +HS into Eq. (114). Making these 

substitutions and then bringing the bracketed expression over to the left side produces 

(Fa +Fs)\(Ha +Hs)R00(Ha+Hs)
T + Rww^Reg(Ha +Hsf. (115) 

This derivation then follows a similar procedure as the inverse filter derivation. It expands 

Eq. (115) and then substitutes the equivalent forms from Eqs. (68) - (71) to produce 

\^2e,N^a^2e,N J[^2e,N'^a^-'2e,N j^ß9\^2e,N^a^'2e,N J 

+\^'2e,N^a^2e,Nf^2e,N'^a^-'2e,Nj"-ee\f-2e,N'*^s^2e,N) 

+\^2e,Nya^2e,N)\y2e,N"is^2e,Nj^dd\^2e,N"ia^2e,N) 

+\^2e,Nya^2e,N)\y2e,N*sC2e,NjRee\f'2e>N'*s*-'2e,NJ 

+\^2e,N'Ps^2e,N\^2e,N'^a^'2e,Nj^-ee\^2e,N"^J-'2e,N)    • • • 
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+$2e,N 

+[^2e,Nys^2e,N)\^2e,N"ia^2e,NJ^ee[^'2e,N^is^2e,NJ 

+[^2e,Nys^'2e,NJ[^2e,N"is^-2e,Nj^ee{^2e,N'^a^2e,NJ 

+[^2e,Nys^2e,N)[^2e,N'^s^2e,N)^ed{^'2e,N"is^2e,N) 

i-c^M^KXeA + (cr2lN?sc2e,NKcT
2e^lN 

-C2etNC2eNRe9\S2eNt¥aC2eNj    + ^'2e,N^-'2e,N^eey~'2e,N^s^2e,N)   ■ (11°) 

Equation (116) simplifies to 

+Qe,jv| ~ya"^a^0s0s^s + "Ps\"j-^0,0, "j + ^«JW, jj*-"2e,JV 

ya^s^-0s0^a^ys^a^-0s0^a ^2e,N 

Va&s"0ß/fs + 7s*a"eßs "^s\^2e,N 

= ^2e,N^0ßs "a$2e,N + ^2e,N    0s<=>s"^s^2e,N > (11') 

where -R0s0s = C2eNRe0C2eN, R^^ = S2eNRwwS2eN, and Ä^ =C2eNRwwC2eN.  The simpli- 

fication of Eq. (116) to produce Eq. (117) uses the facts that #fl = #J and^ = W*.  For 

Eq. (117) to hold, it must follow that 

-?aVaXej9#, + ?s(VsR0ßWs + R*») = Res0?s, (119) 

ttXe&Va + 9s^aR0s0s'»a = 0, (120) 

and ttXefi*, + Wa^fi?, = 0- (121) 

Every matrix in Eqs. (118) - (121) is either exactly or approximately diagonal. Recognize 

that the matrices "Pa, 7s,'%a, and 3^ are always diagonal because they are the diagonalized 

forms of symmetric convolution matrices in the trigonometric transform domain. The matrices 

iL,.m and UL,-, will be diagonal because the samples of w are assumed to be uncorrelated with 
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each other and to have uniform variance, a2, so that Rww = a21.  In general, the transform- 

domain correlation matrix R0ßs will be well-approximated by its diagonal elements if the sam- 

ples of the object, 6, are highly correlated with each other [27]. Specifically if Rgg is the 

NxN correlation matrix for a Markov-I process, [38], [47], [53], then the correlation matrix 

R@s&s in the DCT domain will approximate a diagonal matrix. For a Markov-I process, the 

m - nth. element of Rgg is [Ree\mn = p|m""' where 0 < p < 1. As an example of how well the 

transform domain correlation matrix approximates a diagonal matrix, let Ree be the 256 x 256 

correlation matrix of a Markov-I process with p = 0.9. Then the matrix R@@ = C2e NRggCle N 

in the DCT domain has 98.75% of its total energy, i.e., the sum of the squares of its elements, 

along the diagonal. As a comparison the Fourier domain matrix R@ @  = W^xRggW^H has 

98.20% of its total energy contained in its diagonal elements. The transform domain correlation 

matrix, R@s@s, will approach an exactly diagonal matrix either as N increases without bound or 

as p increases to 1. This approximate diagonalization occurs because the DCT provides an ex- 

cellent approximation to the eigenvectors of the correlation matrix of a Markov-I process [27], 

[39]. Thus under the above assumptions for the noise and object processes, R^.^ andiL,.,,, are 

exactly represented by their diagonal elements 7Va (k) and 7ff2(k) for k = 0, 1, ... , N, and 

R0 0  is well-approximated by its diagonal elements &2
s(k) for k = 0, 1, ... , N-1. 

The above approximations allow for a scalar solution based solely on the diagonal ele- 

ments of the matrices in Eqs. (118) - (121). Solving for the diagonal elements of Eqs. (118)- 

(121) produces the 4x2 overdetermined matrix equation 
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-#a(k)V,(k) ?a(k) 

?s(k) 

= 

~Va(k) 

-•*a{k)1¥,{k) 
&l(k) 

VaikWk) ^a(k) 0 

*£(*) Va(k)#s(k) 0 

(122) 

Equation (122) reduces to 

®l 

0 

0 

^2+^2+i _ 

= 

0 0 
^a^s               . ^a^s 

®l ®) 

0 0 0 

(123) 

where each term in Eq. (123) depends on the index, k, but temporarily has the indexing sup- 

pressed to preserve space in the equation. The system of equations will be consistent, and 

Eq. (123) will equal 

fl£(*) + fl?(*) + K(k) 
®](k) 

*Z(k)+*Z(ky "Ak) 

®l(k) 

?a(k) 

?s(k) 

(124) 
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if **«(%(*) Wa(k)Vs{k) 

®]{k) 

(125) 

<92(*) 

It is straightforward from the definitions of the DTTs and the definitions of R„ „   and 

Ryw to show that 

K(k) = 
0, £ = 0 

and *f(*) = 

2Na\     k = \, 2, ..., N-l 

4Na2,     k = N 

ANa2,    k = 0 

2Na2,    k = \, 2, ...,N-l 

0, k = N 

(126) 

(127) 

whenever Rww = a21.  From Eqs. (126) and (127) it follows that Eq. (125) holds for 

k = \, 2, ..., JV-1.  It is also straightforward to verify Eq. (125) at k = 0 by using the fact that 

^,(0) = 0 based on its required symmetry in the transform domain [34]. Verifying that 

Eq. (125) holds at k = N requires the facts that 02
S(N) = 0 and &a(N) = 0 based on their re- 

quired symmetry in the transform domain [34]. Then L'Höpital's rule must be applied to take the 

limit as 0S(N) ->• 0 of the derivative of the numerator and denominator of each side of Eq. (125) 

with respect to 02
S(N). 

Thus Eq. (125) is valid for all values ofk, and Eq. (124) will hold, from which matrix 

multiplication followed by scalar division produces 

?.(*) = • -**.(*) 

aft*)+aft*)+**<*> 
(128) 

&i(k) 
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and 57(*) = ^W   _2 ^  . (129) 
*,is , *,*,us .  »/(*) &Z(k) + #f(k) + - 

®]i.k) 

Equations (128) and (129) are the one-dimensional scalar Wiener filter expressed in the trigono- 

metric transform domain for symmetrically convolved sequences. Note first that for the noise- 

free case where w = 0, which implies that 70?{k) = 0 and 70? (k) = 0, Eqs. (128) and (129) re- 

duce to Eqs. (97) and (98), and the scalar Wiener filter becomes an inverse filter. Note also that 

if the sequence h(n) possesses strictly whole-sample symmetry, i.e., ha(n) = t?a(k) = 0, then the 

scalar Wiener filter reduces to 

?,(*) = *'ik\       ■ (130) 

®](k) 

Equation (130) closely resembles Eq. (23) for the one-dimensional Fourier case. Similar results 

for two dimensions are shown in the following subsection. 

4.3.2 The Two-Dimensional Scalar Wiener Filter for Trigonometric Transforms. The 

derivation of the two-dimensional scalar Wiener filter in the trigonometric transform domain is 

somewhat more involved than it was for one dimension. The two-dimensional version of the 

general asymmetric cases for the filter matrices requires a four-way decomposition for each 

block symmetric convolution matrix, so that F- Faa+Fas+ Fsa + Fss and H = Haa + Has + 

Hsa +HSS.  Making these substitutions into Eq. (114) yields 

{Faa +Fas+Fsa +Fssj[(Haa +Has +Hsa +Hss)R0d(Haa +Has+Hsa +Hssf + Rv 

= Ree\Haa + Has + Haa +Has)   ■ 

The expansion of Eq. (131) produces 68 terms on the left-hand side. The Kronecker product 

transformations of the convolution matrices in Eqs. (76) - (91) must then transform each of these 
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terms into the trigonometric transform domain. The two-dimensional versions of Eqs. (116)- 

(121) will subsequently become quite cumbersome. The details of this lengthy derivation appear 

in the appendix. The end result in the appendix is a 16 x 4 overdetermined system of equatic 

similar to Eq. (122), which reduces to the 7x4 matrix equation 

tions 

9     7V 

fi)2 ^aa^as "aa"sa ^aa^ss 

aa"as "as 

"aa**ss 

*„. 

rrQ. 

fTc. 

6> 

"%*, 

-».. 

i¥e. 

2        W. 
™aa*sa ^as^sa ^sa + 

0 

~"as"rc 

2 "*sa™ss 

"asTs.5 T«i"V *.. "+"   —— ' sa" ss T'ss 

&. 

-»„ 

"V», 

*„. 

IT... 

-#„, 

Wn. 

-Pac 

?as 

**n, 

-*„. 

-*„ 

rf „. (132) 

All the quantities in the matrix equation are indexed over kx and £2, but Eq. (132) temporarily 

suppresses the indexing to conserve space. 

Unfortunately the set of equations in Eq. (132) is not consistent as it was in the one- 

dimensional case. Thus no general solution exists in the trigonometric transform domain for the 

general case of a PSF, hin^r^), which possesses all four types of underlying symmetry. Solu- 

tions exist for f(nx,n2) in the sequence domain from solving Eq. (131) directly, but this involves 

a large matrix inversion for even small image and PSF sizes. Transform domain representations 
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are computationally easier to implement, so the following discussion focuses on the conditions 

under which a solution to Eq. (132) exists. 

The solution ?aa(kl,k2) = ?as(KA) = ?ra(£„£2) = 7SS{KA) = 0 exists trivially for the 

case when -»aa(kx,k2) = Was(kx,k2) = Wsa(kx,k2) = Wss(kx,k2) = 0, but is of little use. A solution 

also exists for the four cases where any three of the four components are zero. If ^as(kx,k2) = 

'%sa(kx,k2)='»ss(kx,k2) = 0 and Waa{kx,k2)*0, then the PSF h(nx,n2) would possess strictly 

whole-sample antisymmetry about both the nx and n2 axes, and the scalar Wiener filter for this 

case is 

?aa{kx,k2) = ^a(kM 

®l(kx,k2) 

For the case where Waa(kx,k2)= -»sa{kx,k2) = Wss(kx,k2) = 0 and ^as{K,k2)^0, the scalar 

Wiener filter is 

?„(*,,**) = -*M>U (134) 

®l(kx,k2) 

For the case where &aa(.kl,k2)= •&tB(kuk2)= -»ss(kx,k2) = 0 and •&„{k1,k2)*Q, the scalar 

Wiener filter is 

?„(*,,**) = ~^a(kx,k2) (i35) 

vl(kx,k2)+BdkM, 
®l(kx,k2) 

For the case where Waa(kx,k2) = -»as(kx,k2) = t»JJ^,l^) = 0 and "»ss(kx,k2) * 0, the scalar 

Wiener filter is 
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?ss{kM = ^ä 
2 fir     Ir   \,^Äy 

(136) 
"iss(kx,k2) + 

Equation (136) is the scalar Wiener filter for the case of a PSF which possesses strictly whole 

sample symmetry about both the nx and n2 axes. 

Note that the subscript '^'remains in the term &)s(kx,k2) for all four cases in Eqs. (133) - 

(136). Throughout the derivation of the two-dimensional scalar Wiener filter presented in the 

appendix, substitutions of equivalent convolution matrices in the transform domain from 

Eqs. (76) - (91) has resulted in a transform domain object correlation matrix of the form 

R®sß„ = \C2e,Ni ® C2e,N2 j^ss^e.jv, ® C2e,N2) ■  Choosing transform relations so that the trans- 

form domain object correlation matrix always lies in the transform domain of the type-II DCT is 

what allows it to be well-approximated by its diagonal elements and yield a scalar filter. 

Equation (132) will also produce a consistent set of equations in four of the six cases 

where two of the four types of underlying symmetry are simultaneously nonzero. The equations 

will be inconsistent for the two cases where: 

(0    *«,(*i,*2) = *„(*i.*2) = 0» *o,(*i.^) * 0, and -»sa(kx,k2) * 0; 

and (//■)    -»as(k„k2)=^sa(kx,k2) = 0, Waa(kx,k2)*0, and -»ss(kuk2)*0. 

They will be consistent for the four cases where: 

(0     VaaiKA) = &as(kx,k2) = 0, -»sa{kx,k2) * 0, and -»ss(kx,k2) * 0; 

(//)    Waa(kx,k2) = Vsa(kx,k2) = 0, -%as(kx,k2) * 0, and Wss(kx,k2) * 0; 

(I/O    Was(kx,k2) = Vss(kx,k2) = 0, -»aa(kx,k2) * 0, and Wsa{kx,k2) * 0; 

and (iv)    Vsa(kx,k2) = 1?ss(kx,k2) = 0, -»aa(kx,k2) * 0, and -»as(kx,k2) * 0. 
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For the first case where Vaa(k1,k2) = #lB(kl,k2) = 0, -»sa(kx,k2)^0, and -»ss(kuk2)*0, 

the resulting scalar Wiener filter will be 

9aa(kl,k2) = 0, (137) 

9as(k1,k2) = 0, (138) 

?„(kl,k2) = %a(tM_ 

#^)+#„y+Äl 
(139) 

®l(.hA) 

and ?M,*2) = ^kM    ^ (140) 

For the second case where Waa{kx,k2) = VJtM = 0, 3UM2) * 0, and -»ss(kuk2) * 0, the 

resulting scalar Wiener filter will be 

2»(*i>*2) = 0, (141) 

5L(*i,*2) = ?k&iM. 

®ss(Kk2) 

(142) 

9„(kl,k2) = 0, (143) 

and 7»(M2) = ^X^)      2 (144) 

For the third case where Was(kvk2) = -»ss(kuk2) = 0, "»aa(kx,k2) * 0, and ^(A^) * 0, the 

resulting scalar Wiener filter will be 

7„(*i,*2) = 3ÄM. 
^y + fe) + M 

(145) 

®l(kx,k2) 
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9M,k2) = 0, (146) 

?sa(KA) = -*sa(kM    ^ (147) 

®l(.Kki) 

and ?ss(kx,k2) = 0. (148) 

For the fourth case where '»sa(kl,k2) = '%ss(k1,k2) = 0, -»aa(kvk2)^0, and ^(£„A;2)*0, the 

resulting scalar Wiener filter will be 

?aa(kl,k2) = g«A.*2) 

^(M2) + ^(M2)+^#^ 
(149) 

6>l(M2) 

?„(*!,*,) = *K*i»*2> ^ (150) 

55a(*1^2) = 0» (151) 

and ?«(.k1,k2) = 0. (152) 

Note that for each of the eight nontrivial cases where the two-dimensional scalar Wiener 

filter exists, it reduces to the inverse filter of Eqs. (107) - (111) whenever the noise terms go to 

zero. The set of equations in Eq. (132) is inconsistent for each of the four cases having three 

nonzero terms and for the general case of four nonzero terms. 

Two options are available to find a solution to the general problem of a PSF having all 

four types of underlying symmetry. The first option finds the least-squares solution to the over- 

determined system in Eq. (132). The second option makes different substitutions from equiva- 

lent forms for the transforms to yield a 4 x 4 system of equations. 
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Using shorthand notation to express the 7x4 matrix equation in Eq. (132) as "%£ = d, the 

least-squares solution is ^ = (1?T'&)   1VTä. The inverse of 7fT1¥ exists because » has rank 

four. The vector^ is the solution which minimizes \S - ?ty\   [46]. Unfortunately, both the 

least squares solution and the solution to the 4x4 system of equations which results from 

choosing different equivalent forms for the transforms are too lengthy to be presented. 

Each of these two methods of finding a general solution has other disadvantages as well. 

The disadvantage to finding the least squares solution to Eq. (132) is that it is not exact and will 

therefore introduce more error in addition to the errors caused by noise and by the scalar ap- 

proximation which retains just the diagonal elements of the object correlation matrix. The dis- 

advantage to choosing different transforms in the derivation of the two-dimensional filter is that 

the result depends on the terms 01
aa(kl,k2), 02

as(kuk2), and 02
sa(kuk2), which are all not as 

well-approximated by their diagonal elements as 0]s{kx,k2) [26]. The energy in the off-diagonal 

terms which is not accounted for in the diagonal approximation will introduce additional error as 

well. 

The fact that no exact general solution exists to Eq. (132) is not as restrictive as it might 

first appear. The form of the solution appearing in Eq. (136) based on a PSF having only whole- 

sample symmetry is the form of the filter which will likely prove the most useful in practice, be- 

cause whole-sample symmetry is a necessary condition for a filter to have linear phase [37]. 

Many image reconstruction methods model asymmetric PSFs with inherent nonlinear phase, such 

as those used to model the effects of atmospheric turbulence [40], as random processes. In these 

cases, even though individual realizations of a PSF are asymmetric, the mean PSF will often be 
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symmetric so that only whole-sample symmetry will be present in the scalar Wiener filter. 

Equation (136) is a valid form of the scalar Wiener filter in these cases. 

The existence of inverse and scalar Wiener filters in the trigonometric transform domain 

for one and two dimensions has been demonstrated in this chapter. The two dimensional scalar 

Wiener filter is limited by the type of symmetry present in the PSF in certain cases. It was 

claimed that the two-dimensional whole-sample symmetric version is the most useful case for 

image processing. In the following chapter, the performance of the scalar Wiener filter for this 

particular case is analyzed. 
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V. Performance of the Scalar Wiener Filter 
for Trigonometric Transforms 

The performance of the two-dimensional scalar Wiener filter is analyzed in this chapter 

under the assumption that the degradation system point spread function (PSF) is whole-sample 

symmetric. Systems possessing this characteristic are the most likely to be encountered in prac- 

tice. Systems with random asymmetric PSFs often have a mean PSF which is whole-sample 

symmetric. To analyze the scalar Wiener filter's performance, an example is first provided and 

then the normalized mean-squared error is calculated for several PSFs and objects with varying 

parameters. The chapter concludes with a brief discussion on the computational advantages of 

the trigonometric transform-based filter. 

5.1 An Example 

In this section, the performance of the new trigonometric transform versions of the two- 

dimensional inverse and scalar Wiener filters is demonstrated by providing an example. It is 

shown how a blurred object can be completely recovered with an inverse filter. An inverse filter 

cannot, however, recover the original object in the presence of noise. A scalar Wiener filter then 

recovers an estimate of the object from its noisy blurred version by regularizing the high- 

frequency gain of an inverse filter. The results of this example compare an estimate of the object 

using a trigonometric scalar Wiener filter to an estimate using a traditional Fourier scalar Wiener 

filter. This example serves to visually demonstrate the effects of image reconstruction filters in 

the trigonometric transform domain. 

The 256 x 256 pixel satellite object shown in Figure 4 for the trigonometric transform 

domain filtering example in Section 3.4 forms the basis of this example as well. Figure 6 shows 
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the effects of inverse filtering in the trigonometric transform domain for a blurred noiseless ob- 

ject and a blurred noisy object. In Figure 6(a), the object is blurred using a 16x16 pixel Gaus- 

a. Blurred Noiseless Object 

c. Noisy Blurred Object (SNR = 20 dB) 

b. Object Recovered with Inverse Filter 

d. Noisy Object Unrecoverable with 
Inverse Filter 

Figure 6. Inverse Trigonometric Filtering Example Using Hanning-Windowed 
Gaussian Degradation Filter with Me Width of 4 Pixels 
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sian-shaped PSF windowed with a Hanning window [37] to prevent an abrupt cutoff at the tran- 

sition point. The shape of the PSF rolls off to a value of lie at a distance of 4 pixels from the 

center. Applying the two-dimensional inverse filter of Eq. (112) in the trigonometric transform 

domain results in the image shown in Figure 6(b). The original object is completely recovered 

from its blurred version based on knowledge of the blurring PSF. Figure 6(c) shows the results 

of adding noise with a signal-to-noise ratio (SNR) of 20 dB to the blurred object. After adding 

noise, the object is no longer recoverable with an inverse filter as demonstrated by the result in 

Figure 6(d). The reason the trigonometric inverse filter no longer recovers the object from the 

noise is that, like the Fourier inverse filter, it amplifies high-frequency components of the noise. 

Figure 7 presents the results of applying Fourier and trigonometric scalar Wiener filters to 

the noisy blurred object of Figure 6(c). Equation (27) implements the scalar Wiener filter in the 

a. Object Estimate Using Fourier Scalar 
Wiener Filter 

b. Object Estimate Using Trigonometric 
Scalar Wiener Filter 

Figure 7. Scalar Wiener Filtering Example Using Same 
Degradation Filter as Inverse Filtering Example 
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Fourier transform domain, and Eq. (136) implements the scalar Wiener filter in the trigonometric 

transform domain. Unlike the inverse filters for Figure 6, the scalar Wiener filters for Figure 7 

use a block processing technique for their implementation. The need for a block technique arises 

because the correlation matrices which regularize the inverse filter become very large, even 

though a scalar Wiener filter is only concerned with their diagonal elements. These diagonal 

elements in the Fourier domain are the %£(£l5£2) and 6^(£„£2) terms in Eq. (27). The diago- 

nal elements in the trigonometric transform domain are the terms 7C^(kuk2) and 02
ss(kuk2) in 

Eq. (136). The block processing technique divides the noisy blurred image of Figure 6(c) into 

16x16 blocks, zero pads each block to a size of 32 x 32, performs all calculations in 32 x 32 

tiles of transform space, inverse transforms the results back to the spatial domain, and then sums 

the overlapping results. Since a Wiener filter depends on an object to originate from a random 

process with known mean and covariance, this example uses the statistics of the object itself to 

calculate the matrices Rww and Cee.  The object has a nonzero mean which yields a covariance 

rather than a correlation matrix. The noise variance is set equal to 1/100th of the object variance 

to achieve a 20 dB SNR. 

Comparing Figures 7(a) and (b), it is clear that the trigonometric scalar Wiener filter pro- 

duces a better quality estimate of the object than the Fourier scalar Wiener filter. One criticism 

of Wiener filtering is that it tends to oversmooth an image to compensate for noise. This effect is 

clearly more pronounced in the Fourier case, because the object estimate is still quite blurry al- 

though the noise has been averaged out. The trigonometric case achieves a much sharper con- 

trast and higher spatial frequency resolution because of the improved energy compaction of the 

DCT. Comparing the results of Figures 7(a) and (b) to the original object, a mean-squared error 

normalized to the total number of pixels is 345.5 for the Fourier case and 211.7 for the trigono- 
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metric case. Expressed as a ratio to the square of the highest gray scale value of 256, these be- 

come -22.7 dB and -24.9 dB, respectively. These values fall within the ranges of some more 

general expressions for the mean-squared error of the Fourier and trigonometric scalar Wiener 

filters, as will be seen from the results of the following section. 

5.2 Mean-Squared Error Performance 

Closed-form expressions exist for the mean-squared error of Wiener filters because Wie- 

ner filtering is a linear technique. Using the method of [28] and [38], the mean-squared error is 

expressed as \\sf2 = eTe = TrlesT  = Tx\ E< \0-d)w-6\  >>, which expands to 

\\42 =Tx{Rgg-2FHRdd+F(HResH
T + RWW)F

T}. (153) 

The transform domain expression for Eq. (153) is 

\Tsf2 =Tr{R09-2?»R00 + ?(-»R00VT + R7my\ (154) 

where the matrix r represents either a DFT or a DCT matrix. All other quantities in Eqs. (153) 

and (154) have been defined previously. It is easier to calculate the mean-squared error using 

Eq. (154) in the transform domain because all of the matrices are diagonal except the transform 

domain correlation matrix, R00.  Recall that the diagonal transform domain filter matrix, ?, de- 

pends on a diagonal approximation of R00.  The terms in the diagonal approximation are the 

6>^(^J,ä:2) terms from the Fourier domain case of Eq. (27), and the 02
ss{k\'^i) terms from 

Eq. (136) for the trigonometric case. To accurately assess the error that this approximation in- 

troduces, the error expression must compare the diagonalized version imbedded in the filter ma- 

trix, "P, to the nondiagonal version in Eq. (154) which it approximates. Each transform has dif- 

ferent scale factors which cause different gains in the transform domain. The error calculations 
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in the transform domain must account for these different scale factors. The error calculations 

must then apply the appropriate scale factors to calculate the mean-squared error which results 

back in the spatial domain for both the Fourier and the trigonometric transforms. 

Figures 8-11 display the results of calculating the error using Eq. (154) in various two- 

dimensional filtering scenarios. Each filtering scenario depicted uses Hanning-windowed Gaus- 

sian-shaped PSF filters to model the degradation similar to the previous example. The scenarios 

adjust parameters for the length (N) of the N x N PSF, the correlation coefficient (p) in the 

Markov-I object correlation matrix, the signal-to-noise ratio (SNR), and the width in pixels to the 

point at which the PSF has a value of Me. Adjusting these parameters creates different scalar 

Wiener filters in Eqs. (27) and (136) for the Fourier and trigonometric transform domains. Each 

graph displays the mean-squared error (MSE) for the Fourier scalar Wiener filter with a solid 

line, and the MSE for the trigonometric scalar Wiener filter with a dashed line. 

In Figure 8, the PSF filter dimension, N, increases while the correlation coefficient, p, is 

set to 0.9. Additionally the SNR is fixed at 20 dB, and the PSF Me width increases at a constant 

-10 - 
^—^ 

CO /^^"" 
-15 - /.■■■' 

a 
in 
E // 

-20 - "   <^"' 

-?5-  1 1 1 1 1 1  

DFT 

DCT 

5     10    15    20    25    30    35    40 

Filter Dimension (N) 

Figure 8. Normalized Mean-Squared Error 
vs. Filter Dimension 
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rate of JV/16 pixels as iV increases. In each of the remaining Figures 9-11, the filter dimension, 

N, is held to 16x16 pixels. Figure 9 shows how the MSE decreases as p increases for PSF Me 

widths of 1 and 8 pixels, with the SNR fixed at 20 dB. Figure 10 shows the MSE decreasing 

with increasing SNR for values of p of 0.5, 0.9, and 0.99, with the PSF lie width fixed at 1 pixel. 

n 

-5 - 

CO 

in 

E   -20 

-25 

-^O - 

width = 8 pixels 

DFT 
DCT 

width = 1 pixel'              ; 

0 5 0.6      0.7      0.8      0.9 

Correlation Coefficient (p) 

Figure 9. Normalized Mean-Squared Error 
vs. Correlation Coefficient 

n 
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?-20- 
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E 

-30 

-AC) 

_ p=0.9                    -a '^>\    ^% 

p=0.99/                ^>> 

DFT 
DCT 

-1 0        0        10       20       30 

SNR (dB) 

4 0 

Figure 10. Normalized Mean-Squared Error 
vs. Signal-to-Noise Ratio (SNR) 

Finally Figure 11 shows the MSE increasing as the filter lie width increases and the filter band- 

width decreases. The figure shows curves for SNRs of 0, 20, and 40 dB, with p fixed at 0.9. 
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/        SNR = OdB 

SNR = 20 

SNR = 40 

DFT 
DCT 

10 15 

PSF 1/e width (pixels) 

20 

Figure 11. Normalized Mean-Squared Error 
vs. Point Spread Function (PSF) Me Width 

In all of the cases tested, the trigonometric scalar Wiener filter performed better than the 

Fourier scalar Wiener filter, often demonstrating an improvement in mean-squared error on the 

order of 20 - 35%. The greatest increase in performance occurs as the bandwidth of the degrada- 

tion filter in the linear model decreases. The larger gap between the DFT and DCT curves at the 

higher SNRs in Figure 11 demonstrate this effect. The fact that the gap is greater in Figure 9 for 

the case where the PSF 1/e width is 8 pixels than it is for the case where it is 1 pixel also dem- 

onstrates this improvement. The increased performance results from the fact that a type-II DCT 

possesses a near optimum energy compaction property about the low-frequency indices for 

highly correlated images [27]. The improvement with increasing correlation appears in Figures 9 

and 10. 

5.3 Computational Complexity 

In addition to its improved MSE performance, the trigonometric scalar Wiener filter has 

the advantage of requiring fewer calculations to implement. The advantage to performing filter- 

ing in the trigonometric transform domain is that for real sequences, the transform domain coef- 

ficients are also all real, where they are complex in the Fourier domain. Fast algorithms exist for 
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the DCT based entirely on real arithmetic which operate with the same number of floating point 

operations as fast Fourier transforms [5], [27], [39]. These real-arithmetic algorithms for the 

DCT amount to a tremendous savings in computational performance since complex additions 

require twice the number of floating point operations as real additions and complex multiplica- 

tions typically require six times the number of floating point operations as real multiplications. 

Fast hardware realizations of these trigonometric image processing techniques are also possible 

because of their computational cost savings. 

In this chapter the performance of the scalar Wiener filter has been demonstrated visually 

through the use of an example, and algebraically through calculations of the filter's mean squared 

error performance. An argument has been presented that the filter also possesses the additional 

advantage of requiring fewer calculations to implement. Thus the filter designed during the 

course of this dissertation research not only has better performance than its Fourier equivalent, 

but it is easier to compute as well. 
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VI. Conclusions 

A summary of the major results and contributions of the research conducted for this disser- 

tation is presented in this chapter. Some directions for future research in this area of study are 

also given. 

6.1 Results and Contributions 

The results of this research demonstrate how to apply the recently-developed symmetric 

convolution-multiplication property of the discrete trigonometric transforms [34] to the tradi- 

tional image reconstruction problems of inverse and Wiener filtering. Each of the forty forms of 

the symmetric convolution-multiplication property for discrete trigonometric transforms is shown 

to exist as a vector-matrix operation. The convolutional forms of the trigonometric transforms 

can then diagonalize a matrix which represents the symmetric convolution operation [9], [11]. 

Derived in this manner, the symmetric convolution-multiplication property extends easily to 

multidimensional asymmetric sequences which represent the most general type of sequences en- 

countered in practice. 

The new diagonal forms for symmetric convolution matrices represent the first time such 

forms have been developed for the entire family of all forty cases of symmetric convolution. 

Although diagonal forms have been shown to exist for some of the forty cases [41], [42], and the 

initial discovery of a symmetric convolution-multiplication property for discrete trigonometric 

transforms [34] was not part of this research, the diagonal forms derived during the course of this 

research still make a significant contribution to the depth of knowledge surrounding symmetric 

convolution. As a result of this research, the relationship between the diagonal properties of dis- 
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crete Fourier transform matrices and discrete trigonometric transform matrices has been related 

for the first time. 

The diagonalizing forms developed through this research permit a clearer understanding of 

the principle of how symmetric convolution in the sequence domain is equivalent to multiplica- 

tion in the transform domain. With the new matrix formalism of symmetric convolution, it is 

much easier to visualize how the symmetric convolution-multiplication property extends to se- 

quences in multiple dimensions and which might be asymmetric. The filtering of multidimen- 

sional asymmetric sequences is then possible because of the equivalence of symmetric convolu- 

tion to multiplication in the transform domain for each of the underlying types of symmetry in an 

asymmetric image. 

The research presented here uses the newly-derived vector-matrix form of symmetric con- 

volution to calculate for the first time inverse and scalar Wiener filters in the trigonometric trans- 

form domain [10]. The new forms of the inverse and scalar Wiener filters closely resemble their 

traditional Fourier domain counterparts. Specifically, the new forms of scalar Wiener filters [12] 

are possible only because of the newly-developed symmetric convolution multiplication property 

of discrete trigonometric transforms [34]. Previous applications of the discrete cosine transform 

to linear filtering [26], [27] provided very good diagonal approximations for certain types of co- 

variance matrices. The trigonometric transforms could not, however, simultaneously diagonalize 

a matrix representing degradation in the linear model. Now, with the symmetric convolution- 

multiplication property, very good scalar filter approximations are possible because an exact di- 

agonalization of the degradation matrix is achievable, while still retaining the near optimum ap- 

proximation to the diagonal form of the object covariance matrix. 

The two-dimensional scalar Wiener filter is, however, limited by the type of symmetry 

present in the point spread function in certain cases. In general, a two-dimensional sequence can 
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possess four types of underlying symmetry. It can have antisymmetric and symmetric compo- 

nents about each of its two axes. The two-dimensional scalar Wiener filter derived during the 

course of this research is found to exist in the trigonometric transform domain only in cases 

where at most two of the four types of underlying symmetry are present at one time. This limita- 

tion is not severe because the two-dimensional version of the scalar Wiener filter which has 

whole-sample symmetry about both axes is claimed to be the most useful case for image process- 

ing. The whole-sample symmetric case is thus the focus for analyzing the performance of the 

scalar Wiener filter. 

It was demonstrated that a scalar Wiener filter provides better mean-squared error per- 

formance for symmetric point spread functions while reducing the required number of computa- 

tions. The trigonometric transform domain realizations of scalar Wiener filters use fewer calcu- 

lations than traditional Fourier realizations of the same types of filters because they use entirely 

real arithmetic for real inputs. The fact that these filters provide better performance with fewer 

calculations should prove beneficial to a wide variety of other communications, signal process- 

ing, and control system applications, even though they were derived specifically for image re- 

construction. 

The need to improve the quality of noisy, blurred images of spaceborne objects is what 

initially prompted the Air Force to sponsor this design of two-dimensional trigonometric scalar 

Wiener filters. The large number of computations required for nonlinear, iterative image recon- 

struction techniques launched this reinvestigation of ways to improve traditional linear ap- 

proaches. The results of this research show that the performance of traditional linear image re- 

construction methods can be enhanced while also reducing the number of computations required. 

It is hoped that even better performance can be achieved by applying the symmetric convolution- 
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multiplication property of discrete trigonometric transforms to some of the other more powerful 

nonlinear image reconstruction techniques by reducing their number of calculations as well. 

6.2 Directions for Future Research 

Any future research which applies the symmetric convolution-multiplication property of 

discrete trigonometric transforms to image reconstruction should attempt to compensate for the 

assumptions which were required to conduct this research. This research required many as- 

sumptions because it was the first time symmetric convolution had ever been used in image re- 

construction. Two assumptions which can be eliminated through future research are the assump- 

tion of an object-independent noise model and the assumption that the point spread function 

which distorts the object is completely known. 

The imaging model for this research requires noise that is zero-mean, additive, of uniform 

variance, uncorrelated with itself, and independent of the object. For real-world imaging situa- 

tions, this noise model is not as accurate as one which assumes that the noise is an object- 

dependent Poisson random process [17]. The filtering techniques derived here can be improved 

by using a more accurate Poisson noise model. Incorporating object-dependent photon noise into 

the imaging scenario would make the techniques developed here compatible with more modern 

image reconstruction methods. 

The second assumption which can be eliminated through future research is that the trigo- 

nometric inverse and Wiener filters derived here require knowledge of the point spread function 

of the degrading system. In practice the point spread function of the degrading system is often 

not known exactly. This lack of knowledge leads to a technique called blind deconvolution [4], 

[45]. In blind deconvolution an estimate is sought for both the object and the unknown point 

spread function. In blind deconvolution, the point spread function is unknown but deterministic. 
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Two iterative techniques use inverse [2] and scalar Wiener filters [8] in the Fourier do- 

main to estimate the object and the unknown point spread function. Both of these techniques 

should benefit from the increased performance of trigonometric inverse and scalar Wiener filters. 

The estimates should be of better quality and the iterations should converge to a solution faster. 

The number of computations should also be reduced because the trigonometric filters use real 

arithmetic. If future research reveals success with these iterative techniques, then the symmetric 

convolution-multiplication property could be applied to other more advanced techniques such as 

bispectrum processing for multiframe blind deconvolution [40]. 

A final area for future research which allows the point spread function to be unknown is to 

model the point spread function as a random process. Reasonable statistical approximations to a 

wide variety of atmospheric degradations can often be found [40]. These statistical approxima- 

tions lead to wide variety of powerful techniques [13], [14] which require knowledge of the sta- 

tistics of the distorting process but not the point spread function itself. These techniques all use 

Fourier domain representations which could benefit from being recast into the trigonometric 

transform domain. 

Theoretically it can be concluded from the promising results of this research that almost 

any Fourier-domain image reconstruction technique should be able to benefit from being recast 

into the trigonometric transform domain. 
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(131) 

Appendix: Derivation of the Two-Dimensional Scalar 
Wiener Filter for Trigonometric Transforms 

Many of the significant steps in the derivation of the two-dimensional scalar Wiener filter 

for trigonometric transforms are presented in this appendix. The end result is the 7 x 4 matrix 

equation displayed in Eq. (132) of Section 4.3.2. The derivation starts with Eq. (131) which is 

repeated below 

{Faa +Fas + Fsa +ig[(/7afl +Has +Hsa +Hss)Ree(Haa+Has + Hsa + HSS)
T + RV 

= Ree{Haa+Has+Haa+Has)
T. 

Recall that Eq. (131) is the solution resulting from the Bayesian Gauss-Markov Theorem [28] for 

two-dimensional asymmetric filters represented by the matrices F= Faa+Fas+ Fsa + F   and 

H - Haa + Has + Hsa + Hss.  The matrix H performs symmetric convolution to implement the 

point spread function (PSF) of a system which degrades an object represented by the vector 9. 

The matrix F performs symmetric convolution to recover a vector estimate, 6, of the original 

object. 

Expanding the terms on the left-hand side of Eq. (131) produces 

FaaHaaR99Haa + Faa^aaR99^as + FaaHaaR99Hsa + FaaHaaR99Hss 

+FaaHasReeHaa + FaaHasR00Has + FaaHasR00HL + FaaHasR00HL 

+FaaHsaR00Haa + FaaHsaR99Has + FaaHsaR99Hsa + FaaHsaR99Hss 

+FaaHssReeHaa + FaaHssR00^as + FaaHssR00Hsa + FaaHSs
RdeHss 

+Fas^aaR00^aa + FasHaaR99Has + FasHaaR99Hsa + FasHaaR99Hss 

+FasHasR90Haa + FasHasR99Has + FasHasR99Hsa + FasHasR80Hss 

+Fas^saR99^aa + Fas^saR99^as + Fas^saR99^sa + Fas^saR99^ss 

+FasHssR99Haa + Fas^ssR99Has + Fas^ssR00Hsa + FasHssR99Hss 

+FsaHaaR99Haa + FsaHaaR99Has + FsaHaaR99Hsa + FsaHaaR99Hss 

+FsaHasR99Haa + FsaHasR00Has + FsaHasR00Hsa + FsaHasR09HL    ■ ■ • 
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+FsaHsaRggH
T

aa + FsaHsaRegH
T

as + FsaHsaRggHja + FsaHsaRggH
T

ss 

+FsaHssReeH
T

aa+FsaHssReeH
T

as + FsaHssRggH
T

sa +FsaHssReeHl 

+FsSHaaReeH
T

aa + FssHaaRggH
T

as + FssHaaRggH
T

sa + FSSHmReeH
T

ss 

+FssHmRegH
T

aa +FssHasReeH
T

as + FssHasReeH
T

sa + FSSHasRggH
T

ss 

+FssHsaRegH
T

aa + FssHsaRggH
T

as + FasHsaRggH
T

sa + FssHsaRegHl 

+FssHssReeH
T

aa + FssHssReeH
T

as + FSSHssRegH
T

sa + FssHssRggHjs 

= R-eeHaa + R-eeHas+ R-ee^sa + Ree^ss ■ (155) 

After substituting the trigonometric transform domain versions of the symmetric convolution 

matrices from Eqs. (76) - (91), Eq. (155) becomes 

[(<£*, ®c^Ni)?aa(s2e<Ni ®s2eNi)\{s^Ni ®s;lNi)vaa{c2e,Ni ®c2e^)\ 

■Red[(s;lN®s2-lN2)waa(c2e:Ni ®c2e<Ni)J 

+[(c;U ®c2lN2)?aa{s2e,Nl ® ^2)I(^ ®4>.(cw. ® c^)] 
■Ree[{c-2l,N, ®S£j,)pJc2etNi ®C2e^ 

+[fe ®C2U)?aa{s2e,Nl ®S2etNi)\{s2lNi ®S-lNi)^aa{c2e^®C2e^) 

■Ree[{s-2l,Ni ®C2lNiysa(c2e,Ni ®C2e,Nij\T 

®c2lNi)?aa(s2eMi ®s2eM2)\(s2lNi ®s2~lN2)vaa(c2e<Ni ®c2eM2)] 

■Ro9[(c21,Nl ®c2l,Nl)'»ss(c2e,Nl ®c2eM2)]T 

®c2lN2)?aa(c2e^ ®s2e^2)l(c2lNi ®s-2lNi)vas{c2eMi ®c2e^)] 

■Ree[{s2l,Nl ®^UK(c2e>JVl ®C2e:Ni)J 

-[(S2U ®C2lNl)?aa(c2e,N®S2e^\(c2l^ ®S2lNi)^as(c2etN®C2etN2)] 

■{fe ®^>4C^, ®^2e,W2)][(c2-^ ® ^^.(C^ ®C2eJVJ 

-[«*, ®c2lNl)?aa(c2etNi ®s2e^)l(c£Ni ®s-2lNi)was{c2e^ ®c2eJ] 

* 

-[(' 

r-1 
2e,N, 

Y-l 

'2e,JV, 
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-[(CJU ® s^Ni)?aa(s2e^ ® c2e,N2)}[(s;lNi ®c^2)#„(c2etNi ®c2e^ 

•^[fe ® ^"«UKK.jv, ®<^2)]r 

-[fe ®<*>-(^ ®c2e>^2)][(Ä2-*Wi ac^Jfl^c^ ®c2ei„2)] 

-[(^"«U ®^UHa(^2e,Wl ®C2^2)][(Ä2-^ ®C2-^2)^fl(C2e^ OC^)] 

-[fe ® ^U)?«^ ®C2^2)][(^V, a^UKfc^ ®c2Mfi)] 

"*«[(<£.* ®C2"eV2)»„(C2eiAfi ®C2e>W2)]r 

+\{s^N®s2l>Ni)?aa{c2eßi ®c2e^)][(c2lNi ®c2^2)^(c2e^i ®c2ejW2)] 

■^[fe ® ^K^,«, ®c2e,jf 

+[(^U ® ^AO?4
C

^". ®c2e,W2)][(c2-^i ®c£Nj)aa(c2eJtl ®c2eNi) 

+[(^2eU ® ^U)?«^, ®C2e,W2)][(C2-JjJVi ®C-e'JV2)^(C2^i ®C2e>Wi)] 

■^[(C®CK(cw. ®c2^2)]r 

+[(^U ® s2lNi)?aa{c2eiNi ®c2e^)\{c2lNi ®c£Ni)za{c2tJii ®c2e<Ni)] 

"[fe «^UK^ ® ^«.JvJK^U ® ^"eUK^ ®c2e^2)] 

"^^(^.W, ®^2<0'2)'^aa(
C2e;JV1 ®

C2e,Af2)j 

-[(■^u »^u^K.*. «^^JK^u ®siK(c^ ®c2^2)] 
'^■eeW^le,^ ®^2e,N1)^as\f2e,Nx ®^2e,N1)\ 

••^[('S^ ®C'2e,Af2)^ra(
C2e,A'1 ®

C2e,W2)j 

-[(s^ ®C2-^2)^(^2e^ ®S2eiN2)][(s2lNi ®S-2lNi)waa[c2eMi ®C2eNi)\ 

'R-OO^flcNy ® C2e,N2 frssfae,^ ® C2e,N2 )]    • • • 
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-[(c-2U ®c-2lNi)?as(c2e,Ni ®s2e,Ni)l(c;lNi ® ^2)^(c2^_ ®c2^)] 

■*4fe ^iK(^, ®c2e,„2)]r 

"[fe ®CiK(C^ ®52^2)][fe ® ^>a,(C2<JVl ®C2e^)] 

-[fe »^j?^ ® ^^[(c^, ® ^U>MC^. ®c2e>„2) 

■^[fe®0«(CW, ®C2^2)]r 

-\c;l,Nl ®C-2lN2)?as(c2e,Nl ®S2eiN2)l(c2lNi ®SZjfrJc^ ®C2e>iVJ 

■^[(c2-.U «^^„(c^ ®c2e>iV2)]r 

+[fe ® ^2)?.(J^. ®C2^)][(^U ®c2-^>-(c2.^ ®c2^2)] 

+[fe ® ^K(^^, ®c2e, J][fc ®c2^>4c2^, ®c2e,„2)] 

■4[(C®^K(^^ ®c2e^2)]r 

+[fe »^"«UKK^ ac^JJ^ ®c1rl,Nl)wsa{c2eMi ®c2eNi)\ 

■4*[fe ®c;lNi)vsa(c2eiNi ®c2e<Ni)]T 

+[(s21,N®s2-lN2)?as(s2e<Ni ®c2etNl)\(s£Ni ®c2
1

e,Nl)'»sa(c2e>Ni ®c2MJ 

+[(<^U ®^U )MC^. ®c2^2)][(c2tWl ®c2"V2)^(c2e^ ®c2e> J] 

4[fc®^>-(cM, ®c2^2)]r 

+[(C2~<U ®<W2K(C2^, ®C2^2)][(C2_<U «Cr.UK^, 0C2^2)] 

■^[(^u ®iK(cw, ®c2e,W2)]r 

+[fe®C(?4c^, ®c2e,Nl)][(c2lNl ®c2l,Nl)'»ss{c2e,Ni ®c2e>„J 

■^o[(c2U ®C2lN2)^ss(c2e,Nl ®C2e,„2)]r. ■ • 
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2e,N- 

2e,N- 

2e,N- 

2e,N. 

(c2;U ®^>«(^, ®^2)Ife ®^>«,(c2.^ ®c 

i(c2l,N®s^Ni)9sa(s2e^ ®s2e,N2)][(s;lNi ®^>flfl(c2^ ®c 

-[(c;U ® ^>„(^, ®^2)][fe ^i)^(cMi ®c2e>, 

-{(<£,* ®^KK,,, ®^,Jj[fe ®^K(c2e,_ ®c2e;J 

■*»[(<£*, ®^>.(^, ®c2ejJV2)]r 

[fe ® ^>-(c2^ ®^2)J[(c2^ ®^iiV2K(c2e,Wl ®c 

[(«T.U ® ^UK(c2e,Wl ® ^JK^, ^UHfq^ ®c 

[fe®^2K(c^,® 

■J»[faU ®QlUK(c^ ®c2e>JV2)]r 

-[fe ®c2t*>4^ ®c2e,J][fc ®c2t„>ra(c2^ ®c2e>,2 

- (c2~lNi ®c-2l,Nl)?sa(s2e,Ni ®c2etNi)\(s2lNi *<£Mi)*„(cUJIx ®c2e<Ni 

■R4(C^0S^)MC2e,Nl ®C2e^2)]r 

"ffe ««^UM^. ®C2^2)][(52tA,1 ®C2-eV2)^fl(C2^_ ®C2e;jV2 

-{(<£* ®c2-lNi)9sa(s2e,Ni ®c2etN2)}[(s2-lNi ®c2l,Nl)^a{c2^ ®c2e^) 

■^[fe ®c;U)vss(c2e,Ni ®c2eNij\ 

+ 

+ 

+ 

+ 

)S2e,N2)\[(C2U ®^UK(C2^ ®C 
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(*2«U ® ^^(c^ ® c2e^)][(c-^ ®c-eV>M(c2e,#i ®c2e^2)] 

+[(^U ® c2-^2)?ra(c2e>Wi ® c2e^)][(c-^ ®c-^2)^(c2e>iVi ®c2e>#2)] 

+[fe ®c2^2)?M(c2e>Wi ®c2eJfl)\(c?eJii ®c-2U)vss(c2e,Ni ®c2e,J 

■^[fe^AK(c2,A ®c2e,,v2)f 
+[«*, ®c2-^)?„(c2e>JVi ®c2^2)][(c2-^ ®c2-eV2)^(c2e>Wi ®c2e>JVi)] 

+[(^U ®^;UHK". ®^, Jffe ®^K(c2^ ®c2e;W2)] 

+[fe ® ^u)57»^. ®^;Jv2)][«Wl ®^uK(c2^ ®<^v2)] 

+[(^U ® ^U HK* ®^,^)][fe ®^UK(C^. ®c2e>JV2)] 

•*4^ ®<^UK>(C^ ®c2e,„2)]r 

+[fc ®^K(^, ® ^Jfc ®^K(^, ®c2^2)] 
■^»[(CTeU «Q.UK^, ®C2e,W2)]r 

+[(C2_«U ®^;UK(C2^. ^.Jlfc ® t^jcv, ®c2^2)] 

+[(c2tiv, ® ^UHK.*. ®^e^2)][(c2;
1,JVl ®^U)^(c2^, ®c2e>AJ 

+[(C2~<U ®CK(C2«.". ®^2)][(C2_<U ®^UK(C2e>Wi ®C2e,„2 J 

+[(C£.tf, ®^U)^(C2^, ®'S2^2)][(C2*U «^J^(C^, ®C2«.AJ 

■■Röe[(C'2e,JV1 ® C2e,W2 j^^e.A', ® C2e,N2 )J    • • • 
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+[fe ®C2lN1)9ss{S2e,Ni ®CletNi)\{S^Ni ®C-2lNiysa{C2e^ ®C2e>#2)] 

•^[fe®^2K(CMl ®C2e,N2)\ 

^2_.u ®^u)?«K". ®c^)][fe ®^K(c2.^ ®c2fJo] 

-f^,®^1 
e,W2 J5a N^^le.. 

ilN®s^N2)^as(c2eiNi^c2e^)]T 

9ss(s2etNi ®C2eJ,2)j[s2lNi ®C2lNi 

Rf 

+ 

elfcU ®Q«U K(C*.". ®C2e^)]3 

"2e,.W2 y^sa y-"2e,Nt ® ^2e,iV2 ) I 

^iU ®^2)?-(^. ®C^2)][fe ®Q^ ft. 

"^[(Qe.Af, 

+ 

+ 

+ 

+ 

,N®C2lNM ■2e,Ni ^ ^2e,Af2 )
Wss\^-2t 

^2^,®«^)' 

*®C2..iO] 

'   2/JI\    "'"l ">" 

hf^ ® C2-^2 )?„(c2e>Wi ® C2      Wr-i    a r-i 

»-[(^U ®c2<UK(c^> ®c2^2)][(c2-e
1
;Wl ®c2-eV2)*„(c2e^ ®c2e>iV2)] 

+[(C2"eU ®^eU)?4C^ «^J^, ®C2-eU)^(C2^ ®C2e,iV2)] 

■^[(^U <WlK(CW, ®C2ejW2)]r 

+[(c2"eU ®QeU)?«(c2e.Ar, ®C2e,W2)][(c2-^i OC^^^ ®C2e>„J 

■^[(c2"eU ® c2"eU yjc2ttNi ® C2    ^ 

+[(C2"U ®Q«U W^. ®S2e,N2)]KV{S2e. 

-[(C2U ®c2-lNi)?as(c2e<Ni ®s2e^)Yww[c2etNi ® s2e^)r{c2eMi ®s2e,NJ
T 

-[fcU ®C2lN2)?sa(s2e>Ni ®C2e^)\Rww[s2eM®C2etN2)
T{s2e>Ni ®C2ejNl)~T 

+[(C2eU ®C2_^2)^(C2e,Wl ®C2^2)]j?w(C2e>Wi ®C2^2)
r(C2eWi ®C2eJV2)" 

=(c2e>Wl oc^)"1^ ®C2^2)äöö[(^ ®Ä2;V2K(c2e;Wl ®c2eJVJ 

ic2e,Ni ®C2e>NJ\c2eiNi ®C2e>W2)^[(c2-^ ®^2)^(c2e^ ®C2e>iV2)]r 

-(<^ ®c,
2e,W2)~1(c2^i ® C2^2)ä„[«WI ®c2-eV2)*„(c2eiAfi ® c2e>JVi)]r 

^^ ®c2^2)
_1(c2e,Wl ®c2eÄ)Ä,e[(c-eVi ®c-2lNi)wss{c2e^ ®c2eJ,2)J. 

+1 

+1 

+1 

-T 

4 

(156) 
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Equation (156) can be simplified by making the substitutions 

R0SS0SS 
= (C2e,JV, ® C2e,N2 )-

Röff(C2e>JV1 ® C2e,N2)   > 

^A = \^2e,Ar, ® ^2e,W2 )"^w [^le,^ ® $2e,N2)   ' 

■*»„»«,       ( '2e,JV, ^ "2eJV. JÄw(C2eJVi ^^e.AfJ   > 

RWsa7Vsa -\^2e,N1®^2e,N2)
Rww[^2e,N1®^-2e,N2)   ' 

and 
"ss"ss \ 2e,N, w ^2e,M j-^w^ 2e,N, w w2e,W. )' 

+1 

+1 

+( 

Making the substitutions from Eqs. (157) - (161) into Eq. (156) produces 

(Qe.W, ® Qe.ATj ) JacftaaR-ejaJ&aa\^2e,Ni ® *2e,W2 ) 

l"(i^'2e,Af1 ® *"2e,W2 j ?aa'*aaR0sßJ*as\C2e,Nl 2e,N2 J 

h(C'2e,W1 ® C26,W2) ^^^©^^(^e,^, ® ^e,^ ) 

'"(Qe.W, ® ^2e,W2 j ?oa^aa-^0„©„^«^2e,W, ® ^2e,W2 j 

"(^«.JV, ® ^2e,W2 j "?aa%asR0jaJ3faa \*2e,N\ ® ^2e;W2 ) 

"(*^2e,JV, ® ^2e,W2 j "Paa^asR0ss0ss ^as \f'2e,Nl ® ^e.M, j 

"(^e.JV, ® ^2e,W2 j ?aa*as-*<9„<9„ *ä> (^e.W, ® ^2e,Ar2 j 

"(^e.W, ® ^2e,JV2 j 'Paa'^asR0ss0ss'^ss\f'2e,Nl ® ^2e,JV2 j 

'(^«.JV, ® ^e.JVj j ^^-^©„©„^(^e.W, ® ^2e,W2 ) 

'[ple^i ® ^2e,W2 ) '?aa'%saR0s,0j%as \f-2e,Ny ® ^e.JVj j 

'[^2e,Nt ® ^2e,Af2) ^aa^sa^^^sa \^2e,Ni ® ^e.Wj j 

"(^.tf, ® $2e,N2 ) ?aa^saR0ss0^ss\f'2e,Nl ® ^2e,N2 j 

h('^2e,Af1 ® $2e,N2 j ^aa^ssR0ss0^aa (^e.W, ® ^2e,N2 ) 

^S2etNi ®S2e<Ni)~X?aaWssR@sßyas{c2e,Ni ®S2eNi) 

V\^2e,Nl ® ^2e,N2 ) ?aa'^ssR0sJ0ss'^sa\^2e,Ni ® ^2e,N2 ) 

V\^2e,Nl ® $2e,N2 ) ?aa'%ssRess0j%ss\f'2e,Nl ® ^*2e,iV2 j 

-r 

-r 

-r 

-r 

-T 

+1 

+( 

+( 

(157) 

(158) 

(159) 

(160) 

(161) 
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+1 

+1 

+( 

+( 

+( 

+( 

+( 

+( 

+1 

+1 

+( 

+1 

'2e,N, w ^2e,N, 

'2e,N, ** ^2e,N7 

,2e,Af, ^ ^2e,Nj 

*2e,Nl ^ ^2e,N2 

'2e,N. ** ^2e,N, 

-2e,N, *" ^2e,N, 

■'2e,N, ^ ^2e,W, 

'2e,N, ^ ^2e,N-, 

'2e,N, ** 'J2e,N, 

'2e,Ni ** ^2e,N2 

'2e,N, ^ "2e,JV, 

'2e,N. ^ *J2e,W, 

■'2e,Nl ** *J2e,W! 

'2eJV, ^ 'J2e,N-, 

'2e,N, ^ "2eJV, 

'2e,N, w "2e,JV, 

-2e,Af, ^ *J2e,A', 

'2e,AT, ^ ,J2e,N1 

'2e,JV, "* "2e,Ar, 

'2e,W, ^ "2e,tf, 

'2e,Ar. ^ "2e,.W, 

y2e,Nl ** IJ2e,N2 

,2e,N1 ** ^2e,N2 

32e,Ni w *J2e,W2 

'2e,W! w ^2«,^ 

'2e,JV, ^^2e,N2 

"Pas'* aaR0ss0s/* act (^2e,W, 

5ai"oo^0s!0SJ'*ai^2e,W1 

5oi"oa-*^0J,©„'*,!sa^2e,Af, 

yas**aa**0ss0ss "ss\~: 

7as*as"0sßs/faa \^2e,Nl 

9as^asR0a0ss^as\C: 

yas'^asR0ss0ss"
isa\^2e,Nl 

7as"iasR0ss0ss"
iss\~2e,Nl 

?*as"isaR0ss0ss"
/aa \^2e,Nl 

"?as'&saR0!a@J&as\C2e,N1 

"?J&saReseJ&sa [S2e,N1 

"?as*saRej9„ "ss(^; 

"?as*ssR0sßs™aa \^2e,Nl 

"Pas'*'ssR0ss0ss'*as\f'2e,Nl 

"Pas^s^-e^J^sa \^2e,Ni 

yas'*ssR0ss0ss'*ssy^2e,N1 

"?sa*aaR0ss0s/*aayi2e,Nl 

'Psa'*aaR0ss0ss'*asy-'2e,Ni 

"?sa%aaR0ss0s^sa {&: 

y,sa'*aaR0ss0ss"
lS5\~2e,Nt 

?sa*asR0J®J*aa \^2e,Nl 

'Psaf^asR0ss0ss*^asy-'2e,Nl 

"?sa%asR0ss0ss*'sa\^2e,Nl 

"Psa"^asR0J3ss * ss \^2e,Nl 

^sa^saR0ss0ss ™aa ^2e,JV, 

'?sa'%saR0sßJ%as\C: 

®C2e,N2)~ 

r 2e,N, w ^2e,N- 

-T 

2e,N, ^ "2e,N. 

2e,N, ^^2e,N- 

^2e,N2 ) 

\-T 

$2e,N2) 

\-T 

2e,W2 j 

\-T 

2e,N2 j 

\-T 

$2e,N2) 

\-T 

2e,W2J 

\-T 
C2e,N2) 

\-T 

2e,N2 j 

\-T 

$2e,N2) 

2e,W2 j 

\-T 

)' 

'2e,W, 

'2e,N- 

'2e,N- r 
)S2e,N2) 

2e,N, ^ ^2e,N, 

-2e,N2) 

)S2e,N2) 

'2e,N. r 
)C2e,N2) 

)C2e,N2) 

®S2e,N2)'
T 

2e,N, w IJ2e,N- 
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-\f2e,Nl®
C2e,N-i 

+{Sle,N®C2e^ 

+(s: 2e,N. Kyx-'2e,N- 

+(S2e,N®Cle,N, 

+{s. 2e,N. ^w2e,W, 

+(s2e,N1 ®S2e,N2 

+(S2e,Nl 
®s2e 

.1*2 

+(S2e,N, ®s2e 
.1*2 

+[^2ejf1 ®s2e .1*2 

+(C2e,Nl ®s2e ,N2 

+\^'2e,N1 
®s2e .1*2 

+(C2e,Nl 
®s2e >N2 

+{C2e,Ni ®s2e .1*2 

+\^2e,Nl ®c2e .1*2 

+(S2e,Nl ®c2e .1*2 

+(S2e,Nt ®c2e .1*1 

+(S2e,N, ®c2e .1*1 

+(C2e,Nl ®c2e .1*2 

+(C2e,Nl ®c2e .1*2 

+(C2e,N, ®c2e .1*1 

+(C2e,Nl ®c2e .1*1 

+(C2e,Nl ®c2e .1*2 

~\^2e,Nl ®c2e .H2 

~[C2e,ffi ®c2e .1*1 

+(C2e,Nl ®c2e .1*2 

-T 

-T 

"Psa^sa^-0ss0s/^sa\^2e,Nx ®^2e,N2j 

^«'»"eA ss\ 2e."i ®^2e,N2) 

?sa'%ssR-0sßJ%aa\S2e,N1 ® *^2e,W2 j 

?sa*ss'*-esßss'&as\f'2e,N1 ® ^2e,N2) 

^sa"^ss^0ss0s^sa\^2e,Nl ®^2e,N2) 

?sa*ss**-0ss0ss'*ss\f'2e,Nx ® ^2e,N2 j 

'?ss*aaR-0ss0ss'*aa\S2e,Nl ® $2e,N2 j 

"?ss*aa°0ss0s/tas\--2<i,Nx ® ^2e,N2) 

"Pss^aaR0ss0s^sa\^2e^l ®^2e,N2) 

yss'^aa^0ss0ss*^ss\y2e,Nl ®^2e,N2J 

"Pss*'as°0ss0s*'aa\^2e,Nl ® ^2e,N2) 

"?ss**asR0ss0ss'*as\f'2e,Nl ® ^2e,N2) 

7s&aß-ej9j*sa\S2e$i ®^2e,N2) 

'?ss*as'S-0ss0s^ss\C2eyx ®^2e,N2j 

^ss'^sa^-0ss0s^aa\^2e,Nl ® ^2e,N2) 

^lss'^sa^0sß^asy-'2e,Nx ® ^2e,N2) 

"Pss^sa^0ss0ss*^sa\^2e,Nl ®^2e,N2) 

?ss*saR-0sps/*ss\Cle,Nl ®^2e,N2J 

'Pss"'ss"0„0„"laa\^2ejfl ® ^2e,N2) 

?ss&ssR-0sseJ%as\f'2e,Nl ® ^2e,N2 j 

^ss'^ssR0ss0s^Sa\^2e,Nl ® ^2e,N2) 

?ss'*ssR0ss0ss'*ssy-:2e,Nl ®^2e,N2) 

2,AoA {^cN, ® S2e,N2 ) 

9as
Rwas7</a:,\^2e,Ni ® ^2e,N2 ) 

"Psa^KsaWsa \^2e,Nl ® ^2e,N2 j 

"yss""lvss1Vss \^2e,Nl ^ ^2e,N2 ) 

\-T 

\-T 
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= (c2e,Nl ®C2e,N)~ R0sßWaa{s2etN®S2e,N)- 

+(C2e,Nl ®C2e,N2)~lR0ss0Was(C2e,N®S2e,Nl)~T 

+(C2e,Ni ®C2e^'lR0ss0^sa{s2etN®C2etN)'
T 

+
{C2e,Nl®

C2e,N1)    ^ß^ssfae,^ ® C2e,N2)      ' (162) 

The simplification of Eq. (156) to produce Eq. (162) makes use of the facts that "%aa = ^r
aa, 

&as = '#L> **,=*&» and *»=*» because the matrices Waa, 1¥as, Wsa, and »„ are all di- 

agonal. Combining terms in Eq. (162) results in the expression 

+i 

+l 

+1 

+1 

^2e,Nx ® ^2e,N2 

C2e,Nx ®
C2e,N2 

*~'2e,Nl ® ^2e,N2 

*~'2e,Nl ® ^2e,N2 

S2e,N1®
C2e,N2 

S2e,Ni®
C2e,N1 

S2e,Nt®
C2e,N2 

S2e,N, ®C2e,N, 

C2e,N, ® S2e,N2 

-1 

-1 

-1 

-1 

-1 

-T 

-T 

yaa*aa"-0J3j*aa ~?as'*as"'0sßs/'aa + ?oo'X#M 

-'Psa'Z'saR-e^e^aa + "?ss^ss^esß^aa \{^2e,Nl ® $2e,N2 ) 

yaa"^aa-^0ss0ss "as ~ yas"as"-0a0ss "as ~ yas"-X/a,K/as 

~Psa"saR0sßss"as +"Pss"' ssR-0ss0ss'"as^f'2e,Nl ® ^2e,N2 j 

yaa"aaR-0sßJ"sa ~ ^as"as"-0sßss"sa ~ ^saR-Usa'Wsa 

~ysa*saR@a0j'*sa + "Pss" ss^JS)^ "sa^2e,Nx ®^2e,N2) 

"Paa^aaROsß^ss ~ yas"as"-0J9j"ss + 7ss"Tva-Xa 

~"Psa"saR-0sßJ^ss + "?ss*ss^eJS>ss"ss^2e,Nx ® ^2e,W2 j 

~'?aa*asR0sßJ"aa ~ Pas"aaR0sßss"aa 

+^sa^ssR@sßs^aa + ^lss"lsaR@„0„ "aa\\^2e,Nl ® ^2e,N2j 

~^aa"aSR-0J3s^"as ~ "Pas" 00^0 sß„^" as 

+^sa"^ssR0sßJ^as + Pss'^saR-0ss0ss"as^~'2e,Nl ® ^2e,N2 ) 

~Paa"asR-0sßss"sa ~ "Pas" aa^e Jd J"'sa 

^Psa^ss^jB^sa + Pss"%saR~0 sß ss^sa^2e,Nx ®^2e,N2) 

~Paa"asR0sßss"ss ~ Pas"aaR0sßss"ss 

+^sa^ssR0sßs^ss + y'ss^saR0sßss^ss\y--2e,Nl ®^2e,N2) 

~Paa"saR-0sßss"aa + Pas"ssR0sßJ"aa 

~y'sa&aaResßJ&aa ^Pss"^asR0sßs^aa\^2e,Nx ® ^2e,N2) 

-T 

-T 

-T 

-T 
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+(s. 2e,N, 

+\^2e,Nl ® ^2e,N2 )    \^Paa^saR0sßss"as + Pas"^ssR0^0s^as 

~Psa^aaR0sßss^as + PSs'"asR0ss0ss'"as^'2e,Ni ® ^2e,N2) 

+y--2e,Nl ® ^2e,N2 J    [Paa'^sa^.ß^sa + ?as"'ssR0sßss"'sa 

~7sa"aa^-0ss0j^sa + yss'"asR0sß:,s'^sa\\^2e,Nl ®^2e,N2) 

+\f'2e,Ni ® ^2e,N2)    Y~*aa    sa    @SS
@

M    
ss + ^as   <ss   @sßss    <ss 

^sa^aa^BsßJ&ss + Pss^asR0sßss"ss\\y2e,Nl ®^2e,N2) 

+{^2e,Nl ® ^2e,N2)    \?aa%'ssR0sßss^aa + "Pas"^saR0sßs^aa 

~Sr'?sa*as**-0ss0s?faa + yss'^aaR0ss0s!,"
iaa\\^2e,Nl ® ^2e,N2) 

^2e,N2J    \yaa^ssK0ss0ss'*as~i~7as'*sa-'t0ss0s!.'*as 

^sa^as^-B^^as + ySs'*aa"©sßss'*asyf'2e,Nx ® ^2e,N2 J 

^2e,N2 J    ^aa'*ss**0ss0ss'*sa + 7as*saR0sßss"sa 

"^"Psa^as^sß^sa + "?ss™aa*-0JS>^ "sa^*2e,Nx ®^2e,N2 j 

$2e,N2 j    [Paa^ss^sß^ss + 7as* saR@ J9 J* ss 

+'?sa'*asR0sßxs'*ss + Pss"^saR0sßJ"ss^-'2e,Ni ®^2e,N2) 

= {C2e,Nt ® C-2e,N2 J    R0sßss^aa (^e.AT, ® S2e,N2 ) 

+[C2e,Ni ® C2e,N2 )    ^ß^as^e,^ ® S2e,N2 ) 

+{C2e,N®C2e^)~XR0sßJ¥sa(s2etNi ®C2etNi)~T 

+(C2e,Nl ®C2e,NlYR&ss0yss{C2e,N®C2etNy. 

Equality in Eq. (163) will hold only if 

9aa\^aaR0sßs^aa + "^A j ~ Pas^as^ß^aa ~ "Psa^saR0sßs^aa 

Jr'?ss'"ss'*-ej9s*faa ~ *-0sßs/*aa> 

"Paa^aa^Jd^as ~ Pasy^asR0sß^as + ^A) ~ ysa"saR0„0sJ^as 

+Pss^ssR0sßs^as = R0sßss^as' 

'?aa'%aaR-0sßs^sa-'?as'%asR0sßs?
fsa ~ ?sa\%saR0 sß^sa + RWsaWm) 

+Pss^ssR0,ß^sa = R0J&J*sa' 

v(s, 

(163) 

(164) 

(165) 

(166) 
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'Paa'^aa^e.ßJ^ss      7as*cJ*-0^J*ss     "Psa"'saR0sßss"'ss 

+?ss\^ssR0sßJ%ss + R70SSWSS) = R0„ßs^ss^ 

~Paa"^asR0sßs/^aa ~'?as'*aaR0sßJ*aa + "Psa" ssR0sßs/*ai 

Jr7ss'*sa'*-0sßs/*aa = "> 

~Paa^asR0sßs/^as ~Pas^aaR0^0s^as + ?sa**ssR0sßs?*as 

+Pss'*saR0sßs/*as = "» 

~?aa'*asR0sßss'*sa ~Pas"aaR0Eßs/'sa + Psa'^ss^.ß^sa 

+"?ss**saR0sßss'*sa ~ "' 

~"Paa*asR0sßs/*ss ~Pas^aaR0sßs/^ss + ?so"ssR0>sßJ*ss 

+Pss'*saR0sßss*
iss = "j 

~"?aa*saR0sßs/taa ^Pas*ssR0,ßss"^aa ~~?so*aaR0sß<J"a 

+7ss'*asR0sßss'*aa = "J 

~Paa^saR0sßs^as + '?as'*'ssR0sßs^as ~ ?so"aaR0'sß'J"as 

+'?ss'*asR0sßss'*as = "' 

—5oa"ja-^0„©„'T5a + "?as*ss^eJ9s*sa ~ ?sa"aaR0sß'„"sc 

+?ss%asR0sßJ%sa = "' 

—7aa"*saR0sßss^ss + 7as*ss"-0sßJ*ss ~ ysa"^aaR0sßss "ss 

+?ss'*asR-0sßss'*ss = Oj 

"Paa^ssR0sßs^aa + 'Pas'^sa^.ß^aa + 5'so*asR0<sß'„ "aa 

+'?ss'%aaR0sßss'^aa = "' 

9aa^ssR0sß^as + "Pas^saR0sßs^as + ?sa^asR0sß ss"%as 

+Pss"^laaR0„eJ%'as - "' 

Paa^ss^ß^sa + Pas^sa^ß^sa + "?sä?*asR0 Jd J%sa 

+Pss^aaR0„0,^sa = "' 

(167) 

(168) 

(169) 

(170) 

(171) 

(172) 

(173) 

(174) 

(175) 

(176) 

(177) 

(178) 
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+?AR0ss0wss = o. (179) 

Just as in the one-dimensional derivation of the scalar Wiener filter, every matrix in 

Eqs. (164)-(179) is either diagonal or approximately diagonal. The matrices "Paa, ?as, ?sa, 

?ss> ^aa* ^as>  »?^a, and >?„ will always be diagonal. The transform domain noise correlation 

matrices, RWm7(lm, ^,A, R*>A> and A*iA' will be diagonal because the noise samples are 

uncorrelated and have uniform variance. The matrices Rw w , R^ v , R^ w , and Rw v  are 

thus exactly represented by their diagonal elements 70aa(kuk2), 70as(kx,k2), 70^^,k2), and 

70*(kx,k2). The transform-domain object correlation matrix, •/?©A, will be well-approximated 

by its diagonal elements based on the same assumption of a highly-correlated object used for the 

one-dimensional case. The matrix R0 e   is therefore well-approximated by its diagonal ele- 

ments ©\s{k\^i)- 

The above approximations allow for a scalar solution based solely on the diagonal ele- 

ments of the matrices in Eqs. (164) - (179). Solving for the diagonal elements of Eqs. (164) - 

(179) produces the 16x4 overdetermined matrix equation which appears as Eq. (180) on the 

following page. Each entry in Eq. (180) is dependent on the transform domain index variables 

kx and k2, but this dependence is suppressed in the equation to conserve space. The 16x4 ma- 

trix equation in Eq. (180) reduces to the 7 x 4 matrix equation of Eq. (132) from Section 4.3.2 

which is repeated here following Eq. (180). 
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•j      TV Or + —* "aa +   — 
0 

, "aa"as 

9      TV 
—It   1i Oi    4-     as 

"aa "as "as "•"   —Ö 
<9? 

~'*aa'*OT "aa"ss 

Of   "JU —CU   >% 
"as "sa "as "ss 

■>     TV 
—Of   Of Of Of Of    + -=i "aa"sa "as"sa "sa 

"aa"ss -Of   Of "as "ss 

0 
-Of   Of 2 sa "ss 

,     TV 
"sa "ss        "ss ^   —, 

0l 

'aa 

'as 

g 
'SS 

-%„, 

-3L 

-3* 

*.. 

"aa"as 

WL "aa"as 

"aa"ss "aa"sa 

-Of Of —Of Of as    ss as    sa 

-Of Of —Of   Of Of  Of "as "sa "aa "sa "sa "ss ff c, 

0 

0 

0 

-Of  Of —Of   Of "as "ss "aa "ss IT', Of Of "sa "ss 

Of   Of —Of  Of Of "aa "sa "aa "ss "aa -Of    Of "aa "as 

-Of Of Of Of —Of  Of Of "as"sa "as"ss "aa"as "ai 

f2 
sa    ss aa    sa 

o 

o 

-Of  Of "sa "ss 1Te. —Of   Of Of Of "aa"ss "as"ss 

Of   Of Of   Of Of   Of "aa "ss "aa "sa "aa "as vi 

o 

o 

Of Of Of Of "as " ss "as "sa 

Of   Of "sa    ss 
rv1 

rrv/ 

It1 
Of  Of "aa "as 

Of   Of Of   Of "as"sa "aa"sa 

tZ1 Ot   Ot Of  Of Of   Of 
"ss "sa"ss "as"ss "aa"ss 

0 

0 

0 (180) 
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nit1 

<2p-    I      a« _>2i   >2i _*%   *2i "%   "% 

(9 
' aa'  sa aa    ss 

'S*   <# "JU     I       <" <&   •a —'A   ■a 
' aa" as 'as 

0 

-,     TV 
—"21   "2: '2t "2t "21     I      sa 

"aa"sa rrasrTsa "sa~       * 
02 "sa "ss 

7       70 7/2    i     mss d(   "2! —"21 Ot —CM  "21 "21   +- rTaa "JS "as Tss rrsa "ss        "ss  ' * 0l 

'aa 

'as 

'sa 

'SS 

#„, 

-■#„, 

1T„. 

Tr,,. (132) 

#„. #„. ~ TT„. iT_. 

yr„. -*„ #„, ""Vr. 

IT „. tT„. TTn< W„. 
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